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ABSTRACT 
 

A cluster of T-cell receptors includes activating and inhibitory stimulatory molecules that favorably or unfavorably 

control immune responses. Recent studies on chronic bovine infections have revealed that, under severe viral loads and 

malignant pathologies, stromal and immune cells increase the expression of immune inhibitory molecules. To maintain 

internal homeostasis, programmed cell death receptor-1 (PD-1) and cytotoxic T lymphocyte-associated antigen-4 

(CTLA-4) inhibit T cell activity. In chronic viral infections, the prolonged activation of T cells leads to the continuous 

production of PD-1 and CTLA-4. Blocking PD-1 and CTLA-4 is a successful therapeutic approach that is actively used 

in the treatment of oncological diseases. The effectiveness of this approach in the treatment of chronic viral infections, 

particularly those caused by bovine leukemia virus has been hypothesized. However, uncertainty surrounds these 

receptors' function in persistent viral infections. This review focused on the functions of PD-1 and CTLA-4 in bovine 

leukemia virus and discusses disease therapies based on their blockade. 
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INTRODUCTION 

 

The oncogenic Bovine Leukemia Virus (BLV) 

belongs to the genus Deltaretrovirus, family Retroviridae, 

and subfamily Orthoretrovirinae. The virus is widespread 

in domestic cattle worldwide, affecting up to 39% of beef 

breeds and up to100% of dairy breeds. Despite the ability 

of the virus to infect blood and milk, less than 5% of 

infected cattle show clinical signs of the disease. The 

mechanism of BLV transmission to humans is unknown; 

however, consumption of raw milk can transmit the virus 

from cattle to humans (Buehring et al. 2019; Khatami et al. 

2020; Canova et al. 2021; de Quadros et al. 2023). 

Despite ongoing anti-BLV interventions, the 

widespread prevalence of the disease has increased interest 

in studying immune checkpoints for the treatment of 

chronic bovine infections. The programmed cell death 

receptor-1 (PD-1)/programmed cell death ligand (PD-L1) 

signaling pathway is associated with BLV infection. 

Studies have shown that immune suppressive molecules 

are highly expressed as the BLV infection progresses 

(Shirai et al. 2011; do Nascimento et al. 2023). The 

regulatory mechanisms of the immune system under 

different physiological conditions are based on the 

opposing activities of various T helper cell subpopulations. 

T cells are one of the critical cells that protect the organism 

from pathogenic microbes, maintain tolerance, and reduce 

tumor progression and metastasis (Jubel et al. 2020; Zou 

and Chen 2008). Effectors T cells (Teffs), which include 

regulatory T cells (Tregs), helper T cells (Ths), and 

cytotoxic T cells (CTL), mediate the antagonistic activity 

of the T-helper cell subpopulation. The roles of Teffs in 

acquiring immunity and Tregs in developing tolerance are 

essential for maintaining effective immunity and internal 

homeostasis (Bucktrout et al. 2018).  

The opposing activities of Teffs and Tregs are 

regulated by several receptors that activate or inhibit 

signals. Stimulatory or inhibitory receptor signals are 

activated upon binding of the T-cell receptor (TCR) to the 

major histocompatibility complex (MHC). These 

stimulatory and inhibitory signaling mechanisms provide 

additional information to T cells concerning local 

microenvironment and host state (Frauwirth et al. 2002; 

Parry et al. 2005). One of the receptors regulating T-cell 

activity is PD-1 and its ligands, PD-L1 and PD-L2, which 

play  essential  roles  in  both  the  T-cell  activity  regulated 
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negatively and positively. The PD-1 protein reduces T 

lymphocytes activation, thereby reducing the risk of 

autoimmunity and immunopathology (Freeman et al. 2000; 

Latchman et al. 2001; Sharpe and Pauken 2018). Further, 

the B7 family receptor co-stimulator, cytotoxic T 

lymphocyte-associated antigen 4 (CTLA-4), exert 

inhibitory and stimulatory effects on activation. The CTLA-

4 receptor is a competitor of the cluster of differentiation 

(CD28) receptor, thereby inhibiting the formation of the 

CD28:B7 signaling pathway and reducing immune 

activation. In addition, the CTLA-4 receptor can disrupt 

stimulatory TCR and MHC signaling and bind to the B7.1 

receptor CD80 on dendritic cells to inhibit antitumor 

immunity (Buchbinder and Desai 2016; Shen and Zhao 

2018; Mayoux et al. 2020). In addition to CTLA-4’s ability 

to inhibit the immune system, increased receptor expression 

has been observed during the progression of human 

immunodeficiency virus (HIV) infection. High receptor 

expression levels have also been observed in liver CD8+ T 

cells during viral hepatitis (Nakamoto et al. 2009; Zhang et 

al. 2010). A worse prognosis is linked to increased CTLA-

4 expression in nasopharyngeal cancer patients (Zhang et al. 

2016). The presented data demonstrates the role of CTLA-

4 receptor in aggravating not only cancer but also chronic 

infections. In addition, dysfunction of antigen-presenting 

cells (APCs), cells of myeloid origin, Tregs, and stromal 

and tumor cells with high levels of CTLA-4 expression are 

essential factors for decreased immunity against chronic 

infections and cancer (Chen 2004; Curiel et al. 2004; 

Gabrilovich 2004; Banchereau and Palucka 2005). 

Given the regulatory functions of PD-1 and CTLA-

4 receptors in inflammatory processes and tumors, 

chronic infectious agents and transformed cells have 

evolved mechanisms to evade host immunity (Attanasio 

and Wherry 2016; LaFleur et al. 2018). Thus, the study 

of PD-1 and CTLA-4 receptor function during chronic 

infection or in oncology is an area of intense research. 

This review presents the structures of PD-1 and CTLA-

4 receptors and their functional roles in bovine 

leukemia. Based on the literature, the therapeutic roles 

of PD-1 and CTLA-4 receptor blockade involving 

different mechanisms of immune inhibition in BLV-

infected cows have been described. 

 

Structure and Function of PD-1 

Under typical physiological conditions, the body uses 

the PD-1 signaling pathway to induce apoptosis to limit 

excessive T cell activation in peripheral organs. The same 

signaling mechanism controls the immune response to 

bacterial and viral infections. The inhibition of PD-L1 and 

PD-1 receptors restored cytotoxic T-cell growth and 

cytokine expression in CD4-deficient and infected virus 

mice. By eliminating infected cells, cytotoxic T cells can 

lower the viral burden (Barber et al. 2006; Francisco et al. 

2010). Blocking the PD-1/PD-L1 or PD-1/PD-L2 signaling 

pathways leads to a similar effect in cancer (Dong et al. 

2016; Rui et al. 2023) (Fig. 1). 

The PD-1 receptor CD279 was isolated from hybrid 

cells of murine T cells and a progenitor hematopoietic cell 

line. On chromosome 2 (2q37), the conserved regions 

(CR)-B and CR-C of the programmed cell death protein 1 

(Pdcd1) gene, which codes for the PD-1 receptor, are two 

Deoxyribonuclease I hypersensitive sites that affect 

receptor expression. Nuclear factor activating T cell 

transcription (NFAT) is present in CR-C and is essential 

in Pdcd1 expression. In addition, NFATc1 binding to CR-

C and c-Fos sites in the CR-B region of CD4+ and CD8+ 

T cells enhances PD-1 production at the initial recognition 

stage. The receptor is a membrane protein refers to the 

CD28 family. At the protein's extracellular N terminus, 

there is an IgV-like fragment, a transmembrane fragment, 

and a cytoplasmic fragment. The receptor has a molecular 

weight of 55 kDa and a length of 288 aa. There are two 

amino acid sequences in the cytoplasmic domain of PD-

1, that is, tyrosine-based inhibitory and switch motifs. 

Tyrosine phosphatases (SHP) 1 and SHP-2, which contain 

the sarcoma homology 2 domain, are connected to the C-

terminal tyrosine sequence (TEYATIVF). Protein 

tyrosine phosphorylation and dephosphorylation are 

critical regulatory activities in numerous signaling 

pathways that result in cell growth, differentiation, and 

death (Ishida et al. 1992; Shinohara et al. 1994; Starr et 

al. 1997; Lorenz 2009). 

Immune cells that have been activated, such as 

CD4+ T cells, CD8+ T cells, B cells, T-killer cells, 

monocytes, dendritic cells, and macrophages, express 

the Pdcd1 gene. Additionally, Pdcd1 expression is an 

indicator for eliminated T lymphocytes and cells with 

reduced effector function and is specifically elevated in 

T cells exposed to long-term antigens (Agata et al. 1996; 

Matsuzaki et al. 2010).  

The activation of the PD-1 receptor is regulated by 

several mechanisms. PD-L1 production in cells of tumor 

and increased PD-1 production in CD8+ T-lymphocytes 

correlate with soluble factors like interleukins 6 and 10 

(IL6, IL-10) (Chen 2004; Curiel et al. 2004). 

Additionally, there was an indicated association between 

the production of PD-L1 on monocytes in the blood and 

that of PD-1 on circulating CD4+ or CD8+ T cells, 

suggesting that the same mechanisms may be responsible 

for the increased activity of PD-1 and PD-L1. 

Furthermore, the production of PD-1 in both CD4+ and 

CD8+ T lymphocytes was shown to be significantly 

higher inside tumor tissues when in contrast to cells from 

samples of blood and healthy stomach mucosa. The 

findings imply that in gastric tumor, cancer cells influence 

the production of PD-1 and PD-L1 (Saito et al. 2013). 

The transcription factor T-box protein produced by T 

cells (T-bet) also controls PD-1 expression. An 

investigation on the stimulation of killer T cells against the 

virus in persistent infections shed light on the function of 

T-bet. Depending on the level of immune activity during 

chronic viral infections, the relationship between PD-1 and 

T-bet protein may also change. For example, during 15 

days of viral infection, no relationship was found between 

the levels of PD-1 receptor and T-bet protein. Additionally, 

decreased T-bet expression during acute infection leads to 

increased PD-1 production in CD8+ T cells. However, for 

full production of PD-1 at persistent infections, receptor 

regulation by T-bet is insufficient. Antigenic signals, T-bet, 

and other transcription factors are expected to control PD-

1 and other regulatory receptors (Kao et al. 2011).  

The two major PD-1 ligands are PD-L1 and PD-L2. 

The ligand of PD-1 is a 290 aa long membrane-spanning 

glycoprotein member of the Ig superfamily B7-CD28 (Kao 

et al. 2011).  The B7  family  of  proteins  includes B7-DC,  
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Fig. 1: PD-1-mediated inhibition of T cells. A. Tumor cells evade the immune response by activating PD-1 using PD-L1 ligand. B. 

Binding of anti-PD-1 antibodies to PD-1 increases T cell activity against tumorigenic cells. 
 

also known as PD-L2, which is the second recognized 

ligand of the PD-1 receptor. In all healthy human and 

mouse tissues, PD-L1 messenger ribonucleic acid (mRNA) 

expression was found. However, it has been noted that the 

PD-L1 receptor is present on the surface of some 

macrophage-like cells in internal organs. The disparity 

between the mRNA and receptor expression on the cell 

membrane highlights the crucial function of the post-

transcriptional systems regulating PD-L1 production 

(Sanmamed and Chen 2014). 

 

Structure and Function of CTLA-4 

CTLA-4 or CD152 belongs to the Ig superfamily and 

has been identified as a membrane protein with a molecular 

mass of approximately 41–43 kDa. CTLA-4 generally 

consists of a leader peptide, extracellular, membrane and 

intracellular region. Three protein isoforms have been 

identified as a result of standard and alternative CTLA-4 

mRNA splicing. The surface CTLA-4 protein is the first, 

the second is soluble CTLA-4 (sCTLA-4) protein with the 

transmembrane fragment removed, and the third is the 

CTLA-4 independent from ligand (liCTLA-4) protein 

lacking the extracellular domain (Jakubczik et al. 2016). 

The presence of the receptor on the outer layer of T 

cells during the G1 stage and subsequent phases of the cell 

lifecycle is suggested by the early occurrence of CTLA-4 

mRNA expression during the stimulation of T cells. A lack 

of protein mRNA expression leads to severe autoimmune 

diseases and significant tissue damage in many organs 

(Sutherland et al. 2000; Homann et al. 2006). Various 

nucleotide substitutions in CTLA-4 gene mapped to human 

chromosome 2q33 have been associated with susceptibility 

to various autoimmune and infectious diseases mediated by 

T cells (Danilovic et al. 2012; Liu et al. 2013). According 

to Eskandari-Nasab et al. (2014), the CTLA-4 gene C/T 

polymorphism at position 318 in the Iranian population 

indicated susceptibility to the risk of brucellosis infection. 

The leader peptide codon is altered by the CTLA-4 A/G 

polymorphism at position +49, which causes alanine to be 

changed to threonine. There are no statistically significant 

variations between autoimmune illness patients and healthy 

people in the frequencies of the alleles and genotypes of the 

CTLA-4 gene variations, according to studies done in 

patients with autoimmune diseases. For example, CTLA-4 

gene polymorphism was not associated with systemic lupus 

erythematosus (Farivar et al. 2014; Oaks and Hallett 2000; 

Rochmah et al. 2022). 

Activated T cells produce the CTLA-4 receptor, which 

interacts with APCs via B7-1 and B7-2 (Lindsten et al. 

1993; Mulley and Nikolic-Paterson 2008; Wing et al. 2011) 

(Fig. 2). This receptor was the first immune checkpoint that 

has become a clinical target for cancer immunotherapy. 

Monoclonal antibodies against CTLA-4 blocking the 

CTLA-4-CD80/CD86 signaling pathway activate 

antitumor immunity and improve the survival of patients 

with melanoma (Danilovic et al. 2012). One signaling 

pathway that enhances T-cell activity is the interaction of 

the CD28 receptor with CD80 and CD86, which 

significantly enhances the TCR-antigen signaling. In 

contrast to CD28, CTLA-4 has stronger affinity to CD80 

and CD86, and its induction negatively regulates T-cell 

activation (Freeman et al. 1993; Hathcock et al. 1993; 

Linsley et al. 1994; Lee et al. 1998; Rudd et al. 2009; 

Schneider et al. 2006; Fife and Bluestone 2008; Callahan 

et al. 2010). 

The B7-1 and B7-2 receptors play a crucial role in 

activating T cells by transmitting a signal from CD28 upon 

specific binding of the TCR receptor to an antigen on the 

MHC. B7-1 and B7-2 are transmembrane proteins type 1 

that have the proximal IgC and distal IgV membrane 

domains, respectively. Although both proteins interact with 

CTLA-4 and CD28,  differences exist in the strength of the  
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Fig. 2: Inhibition of T lymphocytes by CTLA-4 protein. A. Under weak T-cell receptor (TCR) stimulation, CD28 and B7 receptors are 

predominantly dissociated, which is a positive signal for interleukin 2 (IL2) productions and T-lymphocytes proliferation. B. Under 

intense TCR stimulation, there is an increase in CTLA-4 induction and dissociation of CTLA-4 and CD28 receptors, which results in 

the inhibition of IL-2 and T-cells. 
 

equilibrium dissociation constants between these receptors. 

The equilibrium dissociation constant of B7-1 with CTLA-

4 and CD28 was 5–10 times greater than that of B7-2. The 

structure of receptors' cytoplasmic tails and the molecules 

engaged in the signaling pathway are probably related to 

the differences in the biological functions that exist 

amongst receptors. B7-1 and B7-2 receptors' extracellular 

domains' monomeric or dimeric states play a significant 

role in the development and location of signaling 

complexes. B7-2 predominantly enhances the overall 

response of Th2-type T cells, whereas B7-1 promotes the 

differentiation of Th1-type T cells (Suvas et al. 2002; 

Bhatia et al. 2005; Greenwald et al. 2005). 

 

Role of Immune Checkpoints in Infectious Diseases 

Owing to the widespread use of chronic infectious 

diseases in animals and the low efficiency of preventive 

measures, interest in studying animal immune checkpoints 

has increased. The study of cow immunity in leukemia has 

revealed an increase in the number of regulatory T cells 

responsible for the production of transforming growth 

factor-β (TGF-β). Natural killer (NK) cells, tumor necrosis 

factor (TNF-α), and interferon γ(IFN-γ) are all suppressed 

by the rise in TGF-β (Ohira et al. 2016). When studying 

BLV, a connection was established between the PD-1/PD-

L1 receptor signaling pathway and lymphocyte activation 

gene 3 (LAG-3) (Okagawa et al. 2018). Additionally, 

elevated CTLA-4+ T cell expression has been reported 

during the progression of BLV infection (Suzuki et al. 

2015). By enhancing the stimulation of macrophages and 

dendritic cells, T lymphocytes and their secretion of the 

cytokines IFN-γ and TNF-α play a significant role in 

developing immunity against bacterial and viral illnesses. 

However, in the late subclinical stages, T-lymphocyte 

activity decreases, contributing to an increased viral or 

bacterial load and progression to clinical diseases (Sohal et 

al. 2008; Xing et al. 2022; Yang et al. 2023). 

According to a recent study, tumors, malignancies, and 

persistent infections activate CTLA-4, which could 

compromise the immune system. Conversely, the immune 

system's defense against these illnesses is restored when 

antibodies prevent the action of the CTLA-4 receptor with 

CD80 or CD86 (Kaufmann et al. 2007). The inhibitory 

action of cattle CTLA-4 was proven in various 

investigations employing synthesized bovine CTLA-4-Ig. 

Anti-CTLA-4 antibodies were produced when mice were 

immunized with synthesized bovine CTLA-4-Ig. 

Antibodies against CTLA-4 protein significantly boosted 

both healthy and infected BLV immune system's IFN-γ 

production. According to the authors, antibodies against 

CTLA-4 may be useful for developing new therapies 

against BLV infections (Watari et al. 2019).  

Similar effects were observed when the PD-1/PD1-L1 

signal was blocked, which stimulates T-cell activation and 

proliferation in BLV. The progression of viral infection is 

aided by the association of PD-L1 on B cells, which lowers 

the number of PD-1+ T cells. Antibodies against PD-L1 or 

PD-1 were administered to HIV-infected macaques and 

mice infected with lymphocytic choriomeningitis virus 

(LCMV) to treat their infections. This restored multiple 

functions of the previously depleted T cells and eliminated 

the virus in vivo. According to studies, blocking the PD-

1/PD-L1 pathway may have clinical uses for boosting host 

antimicrobial immunity for managing persistent infections 

(Ikebuchi et al. 2011).  

The research of the impact of inhibiting the bovine PD-

L1 receptor on the development of chronic ruminant 

enteritis caused by Mycobacterium paratuberculosis 

showed the possibility of anti-PD-L1 antibody treatment 

for regulating bacterial excretion. Treatment with anti-PD-
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L1 antibodies also activated the production of M. 

paratuberculosis-specific Th1 cytokines in infected cattle 

(Sajiki et al. 2021; Sun et al. 2021). However, immune 

checkpoint-based therapies for chronic infectious diseases 

in animals remain poorly understood (Sun et al. 2021). 

 

Role of PD-1 in BLV 

Subsets of the T cell family like Teff, CTL, Th, and Treg 

are essential for preventing viral illnesses and preserving 

internal homeostasis. Costimulatory or coinhibitory 

signaling pathways regulate T-cell subset functions 

following successful interaction of TCR with МНС. CD4+ 

T cells that specifically recognize МНС II molecules on B-

lymphocytes, macrophages, and NK cells are responsible for 

forming immunity against bacteria and parasites. CD8+ 

cells, which recognized МНС I after activation, function as 

cytotoxic cells in viral infections and malignancies.  

However, T cells are depleted in chronic infections and 

malignant neoplasms owing to constant antigenic stimuli 

and inflammation. Lack of IL-2 and IFN-γ and diminished 

cell proliferation prevent depleted T lymphocytes from 

performing their effector and cytotoxic activities (Wherry 

and Kurachi 2015; Dyck and Mills 2017). In cases of 

chronic infections and malignancies, T cells that are 

exhausted have been seen to show a higher level of 

induction of PD-1 and CTLA-4 receptors. (Bennett et al. 

2003; Qin et al. 2019). Studies related to BLV have shown 

the inhibitory properties of PD-1 and CTLA-4 receptors 

during infection. Increased concentration receptors mRNA 

was observed in CD4+ and CD8+ cells of cows infected 

BLV. Depleted T cells also showed increased mRNA 

expression of factors such as LAG-3, T cell Ig and mucin 

domain-3 (TIM-3). In persistent infections and cancers, 

elevated PD-1 and TIM-3 mRNA levels aid in developing 

and maintaining pathogenic conditions. Simultaneously, 

antibodies blocking these signaling pathways reactivate T-

cell depletion and activate immune responses (Ikebuchi et 

al. 2013; Nakamura et al. 2023). 

Studies on depleted T cells from mice with chronic and 

acute infections caused by the LCMV showed different 

levels of PD-1 mRNA expression. Moreover, PD-1 

blockade in T cells with different expression levels led to 

different results. PD-1 mRNA expression was significantly 

higher in mice with chronic viral infections. PD-1 blockade 

in mice with acute infection and high expression levels in 

cells did not restore the effector functions of depleted T 

cells (Yi et al. 2018). The provided data highlight the 

significant contribution of Teff proliferation to PD-1 

blockage in improving the management of persistent viral 

infections. Moreover, the blocking of PD-1 and LAG-3 

yielded good results, confirming the role of additional 

inhibitory in depleted T cells (Blackburn et al. 2009; Saeidi 

et al. 2018; Wykes and Lewin 2018). 

When specific T lymphocytes are reduced, persistent 

infections in humans caused by the hepatitis B (HBV) and 

C (HCV) viruses and HIV also exhibit elevated expression 

of PD-1 on those cells. Moreover, the higher the level of 

PD-1 expression, the lower the activity of CD+ T cells 

(Dong et al. 2019). In BLV-infected cows with B-cell 

lymphoma, increased induction of PD-1 protein was 

observed in CD4+ T cells in the blood, and in CD4+ and 

CD8+ T cells in tumor-containing lymph nodes. 

Additionally, the number of PD-1+ T cells in lymph nodes 

containing tumor was higher than that in the blood cells. 

Examination of other BLV lymph nodes from infected and 

healthy cows revealed low concentrations of PD+1 T cells. 

These data suggest that the tumor-bearing lymph nodes 

contain lymphoma-specific CD+ T cells. The PD-

1 signaling pathway, however, enables BLV-induced 

lymphoma cells to prevent immune system reactions. 

(Ikebuchi et al. 2013). 

In cattle, CD4+ T-cell growth and cytokine induction 

in response to viral infection are impaired in late-stage 

leukemia. PD-1 receptor blockade boosted IFN-γ induction 

in blood mononuclear cells in response to a mixture of 

glycoprotein gp51 peptides. The increase in IFN-γ was 

determined to be because of the increased PD-1+ cell levels 

in the CD4+ T cell population. Simultaneously, the 

blockade did not boost IL-10 production in mononuclear 

cells, indicating that PD-1+ T-cells function was not fully 

restored (Ikebuchi et al. 2013). 

PD-1 inhibition is a viable method for reactivating 

fatigued T cells in BLV. Both cows with BLV infection and 

healthy cows produced more IFN-γ when exposed to 

monoclonal antibodies against bovine PD-1. Anti-PD-1 mAb 

therapy can be employed to treat various bovine infections 

despite the systemic side effects of immunotherapeutic 

techniques. Monoclonal antibodies may also expand 

education in the field of immunology and elucidate the 

immunosuppression disorder in chronic viral infection. 

 

Role of CTLA-4 Protein in BLV 

CTLA-4 is associated with T-cell depletion in several 

chronic infections. CTLA-4 is selectively induced in HIV-

specific CD4+ T cells, whereas no induction of this antigen 

is in CD8+ T cells obtained from patients infected with 

HIV. Increased induction of CTLA-4 was observed in 

patients with HIV with advanced disease in which CD4+ T 

cells were unable to produce IL-2. CTLA-4 blockade 

enhances the functional activity of CD4 + T cells in vitro. 

These results demonstrate the potential role of CTLA-4 as 

a target for increasing CD4+ T-cell activity during 

immunotherapy in HIV-positive individuals (Kaufmann 

and Walker 2009; Wu et al. 2023). In CD4+CD25+ 

Foxp3+ T lymphocytes, CTLA-4 production is positively 

linked with disease progression. High levels of CTLA-4 

have been observed in the leukocytes of HIV-infected 

macaques with a high viral load. The study demonstrated 

that CTLA-4 induction was lower in patients with HIV 

with slow disease progression than in asymptomatic 

patients with HIV. In addition, CTLA-4 induction was 

negatively correlated with CD4+ T-cell concentration, 

proving the significance of low Treg concentration 

combined with low CTLA-4 induction in slowing HIV 

progression (Boasso et al. 2007; Zhang et al. 2010).  

Studies have shown that CTLA-4 contributes to the 

immunosuppression of chronic infections and malignancies. 

In persistent lymphocytosis in BLV-infected cows, T cell 

dysfunction leads to the dysregulation of Th1 and Th2 

cytokines, resulting in disease progression. According to 

Suzuki et al. (2013), the disease progression in BLV-

infected cows was closely related to the concentration of 

Foxp3+CD4+ T cells. These data suggest that decreased 

immunity during BLV infection is associated with the 

induction of CTLA-4 inhibitory molecules on Tregs. Amino 

acid sequencing of CTLA-4+ T cells revealed a conserved 
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MYPPPY site, which is characteristic of the CTLA-4 amino 

acid sequence in other mammals. Additionally, a protein 

phosphatase 2A binding site for the immunological 

inhibitory signaling pathway is present in a cytoplasmic 

domain of CTLA-4 (Suzuki et al. 2015). 
In BLV infections, autoimmune diseases, graft 

rejection, persistent infection, and chronic viral infections, 
CTLA-4 is induced on CD4+CD25+Foxp3+T cells. 
Because Foxp3 is a marker of Tregs, studies support the 
assumption that CTLA-4 induces Tregs. The increase in 
Foxp3+CD4+cells level coincided with an increase in viral 
load, while there was a decrease in IFN-γ induction in BLV-
infected cattle. These findings suggest that T cell depletion 
during BLV infection is associated with increased induction 
of CTLA-4 on Tregs (Suzuki et al. 2013).  

The CTLA-4 inhibition has proven to be a successful 
treatment for malignant diseases and persistent infections, 
using melanoma and HIV as examples. Monoclonal 
antibodies against CTLA-4 activated T cells and cytokine 
production in BLV-infected cows. With T-cell activation, 
blocking CTLA-4 increased IFN-γ production in BLV 
antigen-stimulated mononuclear cells of blood (Watari et al. 
2022). The opposite effect on IFN-γ increased concentration 
in mononuclear cells of blood activated by BLV antigens 
was exerted by bovine CTLA-4-Ig. The findings imply that 
CTLA-4 causes depletion of the function of CD4+ and 
CD8+ T cells and disease progression in cattle infected with 
BLV (Watari et al. 2019; Passariello et al. 2020; Lembo et 
al. 2022) and that antibodies against bovine CTLA-4 
increase lymphocyte function and may be used as a novel 
treatment for chronic illnesses that have failed to respond to 
conventional therapies. 

 

Conclusion 
Owing to the widespread occurrence of BLV infections 

and limited studies on the immunosuppressive functions of 
Tregs, there is a scientific and technological need to obtain 
new knowledge and methodological approaches for 
treatment. In the onset and development of chronic 
infectious illnesses, immune checkpoint receptors and 
inhibitory cytokines mediate the immunoregulatory actions 
of Tregs. CTLA-4 and TGF-1 may facilitate t-cell-mediated 
immunosuppression during the persistent infection stage. 
The resulting recombinant proteins, monoclonal antibodies, 
and therapies for chronic infections can be used to identify 
novel targets and infections in farm animals. 

PD-1, PD-L1, and CTLA-4 are potential targets to 
restore the function of exhausted T cells. Numerous studies 
using antibodies and peptide molecules to disrupt the PD-1 
signaling cascade and cancer patient research studies 
support these results (Tao et al. 2020; Cao et al. 2023). 
Additionally, bovine checkpoint blockade studies have 
shown increased IFN-γ production in BLV-infected cattle. 
Based on the literature, the results contribute to research to 
develop new treatments for other types of infections in 
cattle. In addition, these results contribute to research in 
immunology, virology, bacteriology, and biotechnology 
aimed at elucidating the mechanisms of infectious diseases 
that cause immunosuppression. 
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