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ABSTRACT 
 

We analyzed the epidemiological relationship of Clostridium (C.) perfringens isolated from feces and soil of horse 

farm using multi-locus sequence typing (MLST) and then compared it with standard strains registered in the National 

Center for Biotechnology Information. MLST results using MEGA 6.0 showed that total 13 clusters were formed in 

the phylogenetic tree of the housekeeping genes sequence of the standard strains, and the Korea Isolate Ju (KSJ) 

strains were classified into 8 types (cluster 4, cluster 5, cluster 6, cluster 7, cluster 8, cluster 11, cluster 12, and cluster 

13). The KSJ strains were categorized into 4 groups. Each group had a high bootstrap value (>90%). These results for 

C. perfringens are considered to be helpful for performing epidemiological investigations and establishing prevention 

methods for diseases in the future.  
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INTRODUCTION 

 

Clostridium (C.) perfringens is a gram-positive, 

anaerobic, endospore-forming, rod-shaped with a size of 

0.6-2.4×1.3-19.0μm, is one of the most common 

foodborne pathogens in the world (Abdelrahim et al. 

2019; Hussain et al. 2022) and produces at least 17 

different toxins. Four major types (alpha, beta, epsilon, 

and iota) of toxins are produced by C. perfringens and 

classified into 5 different types (A, B, C, D, and E) as per 

the production of toxins (Khan et al. 2008; Deguchi et al. 

2009; Diab et al. 2012; Li et al. 2013; Uzal et al. 2014; 

Nagahama et al. 2015; Othani and Shimizu 2016; Kiu and 

Lindsay 2018; Mehdizadeh Gohari et al. 2020). However, 

the typing system has been expanded to include toxin 

types F and G based on production of enterotoxin (CPE) 

and necrotic enteritis B-like toxin (netB), respectively 

(Kiu and Lindsay 2018; Rood et al. 2018; Saeed et al. 

2021). 

The toxicity of C. perfringens depends on the toxins 

produced; not all C. perfringens are toxic, and bacterium 

without pathogenicity are also widely distributed in 

environment and easily found in gastrointestinal tract of 

humans and animals (Nakano et al. 2017; Mehdizadeh Gohari 

et al. 2021). The spores of this bacterium can survive without 

dying in extreme conditions of soil or sediment and human or 

animal feces (Li et al. 2013). Traditionally, the major toxins 

have provided the basis for classification of the individual 

strains into 5 toxin types (A-E) (Mehdizadeh Gohari et al. 

2020). C. perfringens that are isolated from the environment 

or human field are mostly type A. Types B to E are mainly 

isolated from animals (Lee 2016). The existence of C. 

perfringens in drinking water is used as an indicator of water 

pollution by feces and similar pollutants (Diab et al. 2012; 

Uzal et al. 2014). 

C. perfringens causes food poisoning in humans, and 

although there are differences in the amount of livestock 

in animals, it usually infects intestinal relationships, such 

as necrotic enteritis and hemorrhagic enteritis, leading to 

death (Li et al. 2013; Farag et al. 2023).  

Microbes reside on the animal’s intestine and soil; 

therefore, it can be contagious, especially in livestock 

species that grow in groups or animals that live in clusters. 

This can cause contraction and death of animals because 

of diarrhea and enteritis, resulting in economic loss (Uzal 

et al. 2014). 

Considerable research has been conducted on C. 

perfringens at the national and international level (Yoo et 

al. 1997; Gkiourtzidis et al. 2001; Kim et al. 2006; Lahti 

et al. 2008; Deguchi et al. 2009; Xiao et al. 2012; Park et 

al. 2016). In particular, in humans, there are many studies 

on CPE toxins that cause food poisoning, and various  

types of toxins that cause enteritis in chickens are being 

studied (Lahti et al. 2008; Lee 2016). Along with studies 
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of the toxins in these bacteria, epidemiological studies are 

conducted to determine the origin of the disease in cases 

of food poisoning or to identify the characteristics of the 

bacteria by analyzing the correlation in the diseases (Park 

et al. 2016). 

Various epidemiologic studies using pulsed-field gel 

electrophoresis (PFGE) and several other molecular 

typing tools have been developed to investigate the 

epidemiological relationship among homogeneous 

bacteria. However, these tools are less portable due to the 

index of variation and difficult to compare results between 

laboratories (Maiden et al. 1998) and is also difficult to 

investigate the genetic relationship between strains 

isolated from different outbreaks. To overcome these 

hardships, multi-locus sequence typing (MLST) has 

emerged as a more suitable tool for large-scale global 

epidemiologic studies (Park et al. 2019). MLST is based 

on sequence comparison of internal fragments of 

housekeeping genes (Verma et al. 2020). The mutations of 

housekeeping genes are presumed to be neutral (Maiden 

et al. 1998), and the nucleotide changes in these genes are 

relatively slow; therefore, MLST is an ideal molecular 

tool for global epidemiological research (Enright and 

Spratt 1999; Jolly et al. 2018; Guerrero-Araya et al. 2021).  

This study aims to analyze the epidemiological 

relationship of C. perfringens isolated from feces and soil 

of horse farm in South Korea using MLST and then 

compare it with standard strains registered in the National 

Center for Biotechnology Information. 

 

MATERIALS AND METHODS 

 

Ethical Approval: This study was carried out on the care 

and use of experimental animals according to the 

guidelines of the Animal Ethics Committee (KNU2019-

0091) of Kyungpook National University in Korea. 

 

Target strain and housekeeping genes: The present 

study was conducted with 20 C. perfringens isolated from 

feces of dead foals and soil of horse farm previously 

reported in South Korea (Park et al. 2019) and 16 standard 

strains (Table 1). A total of 8 housekeeping genes, 

including toxin genes (plc, colA), stress response genes 

(sodA, groEL), sigma factor sporulation (sigK), putative 

metabolism genes (pgK, nadA), DNA replication (gyrB) 

was used, and primers used in this study are shown in 

Table 2 (Deguchi et al. 2009; Xiao et al. 2012). 

 

MLST Analysis: MLST analysis of C. perfringens was 

performed with 16 standard strains and 20 strains isolated 

in South Korea. For the MLST analysis, PCR was 

performed including initial denaturation for 5 min at 

94°C, multiple reactions in a total of 35 cycles as follows: 

94°C for 30 s, 55°C for 1 min, 72°C for 1 min, and the 

final extension by reacting at 72°C for 7 min. The 

annealing time was all equally performed at 55°C 

(Deguchi et al. 2009). The amplified product was 

analyzed for nucleotide sequence using ABI PRISM 

3730XL Analyzer (Applied Biosystems, Foster City, 

USA). The sequence of the nucleotide was arranged in the 

order of colA, groEL, sodA, plc, gyrB, sigK, pgK, and 

nadA and was aligned using the Bioedit program.  

Data Analysis: The phylogenetic tree was constructed 

based on concatenated nucleotide sequences from 8 

MLST loci to show genetic relationship between all of the 

C. perfringens sequence types using neighbor-joining (NJ) 

method with the bootstrap values at 1,000 replicates by 

MEGA 6.0 program (Tamura et al. 2013). 
 
Table 1: Sixteen standard strains of Clostridium perfringens 

used in this study 

Strain Type Source Region 

NCTC8239 A Food poisoning Europe 

NCTC8533 B Animal disease (Lamb) Europe 

NCTC8081 C Necrotizing enterocolitis Europe 

NCTC3182 C Animal disease (sheep) Europe 

NCTC8346 D Animal disease (sheep) Europe 

NCTC8084 E Animal disease (calf) Europe 

NCTC8798 A Food poisoning Europe 

W4232 A Food poisoning Japan 

W6205 A Food poisoning Japan 

MR2-3 A Healthy Japan 

M-07 A Food isolate Japan 

M-08 A Food isolate Japan 

T1 A Food poisoning Japan 

T16 A Food poisoning Japan 

VWA080 A Food isolate Europe 

F5603 A Sporadic diarrhea Europe 

All standard strains cited by PubMed database, National Center 

for Biotechnology Information, USA. 

 

RESULTS 
 

The results of analysis of gene sequencing of 20 

strains (KSJ) showed a new sequence type, as shown in 

Table 3. Of the 20 strains, KSJ-02, KSJ-22, and KSJ-23 

were completely consistent with all the previously 

identified species profiles. However, they were identified 

in a new sequence type with the entire sequence of 

housekeeping genes. KSJ-03, KSJ-08, KSJ-09, KSJ-14, 

KSJ-15, KSJ-16, KSJ-25, and KSJ-28 were sequence 

types with 1 to 5 sequence differences that were not 

completely consistent with existing allelic profiles. KSJ-

04, KSJ-06, KSJ-07, KSJ-11, KSJ-12, KSJ-13, KSJ-17, 

and KSJ-21 were identified as new nucleotide sequence 

types that did not match the existing allele profile. 

MLST results using MEGA 6.0 showed that a total of 

13 clusters were formed in the phylogenetic tree of the 

housekeeping genes sequence of the standard strains, and 

the KSJ strains were classified into eight types (cluster 4, 

cluster 5, cluster 6, cluster 7, cluster 8, cluster 11, cluster 

12, and cluster 13), as shown in Fig. 1. 

KSJ strains were categorized into four groups. Each 

group had a high bootstrap value (>90%). These strains 

were classified as follows: KSJ-14, KSJ-15, KSJ-16, KSJ-

20, KSJ-25, KSJ-26, and KSJ-28 in group I; KSJ-08, KSJ-

09, KSJ-11, KSJ-12, KSJ-13, KSJ-17, KSJ-22, KSJ-23, 

and KSJ-28 in group II; KSJ-03 in group III; and KSJ-04, 

KSJ-06, KSJ-07 and KSJ-21 in group IV, respectively 

(Fig. 2). 

 
DISCUSSION 

 

The MLST assay can distinguish even homogeneous 

strains that are closely related via various allele 

combinations (Spratt 1999). In addition, by determining 

the sequence of each allele and then determining the
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Table 2: Primers of MLST housekeeping genes used in this study 

Species Gene Name Sequence Size (bp) Analysis (bp) 

Clostridium 

perfringens 

colA 
colA_F 5’-ATTAGAAAGTTTATGTACAATAGGTG-3’ 

816 670 
colA_R 5’-AAGACATTCTATTATTTCTATCGTAAGC-3’ 

groEL 
groEL_F 5’-TACAAGATTTATTACCATTACTTGAG-3’ 

901 685 
groEL_R 5’-CATTTCTTTTTCTGGAATATCTGC-3’ 

sodA 
sod_F 5’-CAAAAAAAGTCCATTAATGTATCCAG-3’ 

663 502 
sod_R 5’-TTATCTATTGTTATAATATTCTTCAC-3’ 

plc 
plc_F 5’-AGGAACTCATGATTGTAACTC-3’ 

725 541 
plc_R 5’-GGATCATTACCCTCTGATACATCGTG-3’ 

gyrB 
gyrB_F 5’-ATTGTTGATAACAGTATTGATGAAGC-3’ 

905 735 
gyrB_R 5’-ATTTCCTAATTTAGTTTTAGTTTGCC-3’ 

sigK 
sigK_F 5’-CAATACTTATTAGAATTAGTTGGTAG-3’ 

643 589 
sigK_R 5’-CTAGATACATATGATCTTGATATACC-3’ 

pgk 
pgk_F 5’-GACTTTAACGTTCCATTAAAAGATGG-3’ 

830 681 
pgk_R 5’-CTAATCCCATGAATCCTTCAGCGATG-3’ 

nadA 
nadA_F 5’-ATTAGCACATTATTATCAAATTCCTG-3’ 

821 689 
nadA_R 5’-TTATATGCCTTTAATCTTAAATCCTC-3’ 

 

 

Fig. 1. Phylogenetic tree of 

Clostridium perfringens 

isolated from horse feces and 

contaminated soil in Korea with 

Clostridium perfringens 

standard strains. This tree was 

constructed by the Neighbor-

Joining method, MEGA 6.0 

program. 

 

 

sequence type, phylogenetic classification between the 

strains is possible (Maiden et al. 1998). This method is 

particularly widely used in the field of medicine to 

epidemiologically distinguish between pathogenic and 

non-pathogenic strains of homogeneous bacteria (Park 

et al. 2019). In the case of C. perfringens, there are 

many genetic variations within the same strain 

(Deguchi et al. 2009), insufficient research results, and 

many difficulties in using internationally recognized 

MLST databases. 
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Fig. 2: Phylogenetic tree of Clostridium perfringens isolated from horse feces and contaminated soil in Korea. The nucleotide 

sequences of all 20 new strains (KSJ strains) are separated 4 groups. Red circle included foal death occurred region (KSJ-15 and KSJ-

25, Jeju-Do). This tree was constructed by the Neighbor-Joining method, MEGA 6.0 program. 

 

Table 3: Clostridium perfringens isolates sequence types and region 

Sr. No. Strains Alleles Sequence type Region 

1 KSJ-02 6-3-1-1-4-3-5-19 New Chungcheong-Do 

2 KSJ-03 12*-33-28*-36-18-34*-25-38 New Kyungki-Do 

3 KSJ-04 18*-18-13*-N-11*-N-14*-N New Kyungki-Do 

4 KSJ-06 24*-18*-13*-N-11-N-14*-N New Kyungki-Do 

5 KSJ-07 18*-18*-3-N-8-N-N-N New Chonra-Do 

6 KSJ-08 32*-29*-1*-8*-3-31*-4*-1* New Chonra-Do 

7 KSJ-09 32*-29*-1*-8*-3-31*-4*-1* New Chonra-Do 

8 KSJ-11 7*-6*-15*-N-7-6-2*-1 New Chonra-Do 

9 KSJ-12 7*-6*-15*-N-7-6-2*-1 New Chonra-Do 

10 KSJ-13 7*-6*-15*-N-7-6-2*-1 New Chonra-Do 

11 KSJ-14 7*-4*-3-11-4-1*-5-1 New Chonra-Do 

12 KSJ-15 3-19-1-11*-4-4-5-1 New Jeju-Do 

13 KSJ-16 26*-3-1-1-4-10*-2*-1 New Jeju-Do 

14 KSJ-17 7*-6*-15*-N-7-6-2*-1 New Jeju-Do 

15 KSJ-21 5*-18*-13*-N-11-N-14*-N New Gyeongsang-Do 

16 KSJ-22 6-5-24-19-7-33-4-1 New Gyeongsang-Do 

17 KSJ-23 6-5-24-19-7-33-4-1 New Gyeongsang-Do 

18 KSJ-25a 4-1-3-1-1-4-5-20* New Jeju-Do 

19 KSJ-26 6*-1*-3-13-1-1-2-5 New Gyeongsang-Do 

20 KSJ-28 6*-1*-3-13-1-1-2-5 New Gyeongsang-Do 

N: new allelic sequences; *: 1 to 5 allelic base sequences are not 100% matched with pre study (Xiao et al. 2012) and C. perfringens 

MLST homepage (https://pubmlst.org/cperfringens; Jolley et al. 2018). 

 
Conventional domestic and overseas epidemiological 

studies of C. perfringens have focused on the existence of 

enterotoxin gene (CPE) that is primarily designated as a 

major source of food poisoning in humans, or whether the 

gene's location is chromosome or plasmid, and whether 

there is a correlation with disease according to the 

location of CPE gene (Lahti et al. 2008; Deguchi et al. 

2009; Xiao et al. 2012; Mohiuddin et al. 2022). However, 

MLST analysis of C. perfringens is not performed much 

in animals. Although there is a previous study of the 

correlation between toxins and diseases or between strains 

isolated from humans and animals (Jost et al. 2006; 

Chalmers et al. 2008), limited data are available on the 

phylogenetic classification or animal-specific analysis 

compared to studies performed in humans. Therefore, 

more research is needed, focusing on bacteria isolated 

from animals. 

A total of 13 clusters were generated via an 

epidemiological analysis between standard strains and 20 

isolates, and no mechanical correlation with the type was 

shown, as in previous studies. However, a phylogenetic 

tree that was distinguished from each other as per the 

presence or absence of CPE or the location of the CPE 

gene appeared (Lahti et al. 2008). 

The strains isolated from Korea were found in eight 

clusters, of which cluster 4, cluster 10, and cluster 13 

formed the same cluster as the standard strains. Cluster 4 

and cluster 10 both formed clusters, such as standard 
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strains (NCTC8533 and NCTC8084) isolated from 

animals, and the bootstrap value (%) was high [cluster 4 

(87%), cluster 10 (90%)]. 

It is highly likely that the strains of animal origin are 

common ancestors. Since both NCTC8533 and 

NCTC8084 are strains isolated from Europe, it is 

estimated that the domestic isolates in the same cluster 

also originated in Europe. This appears to be closely 

related to European strains systematically because most 

domestic horses, except Halla horses (native crossbreed) 

are thoroughbreds imported from another country. 

In the case of cluster 13, the bootstrap value with the 

standard strain MR2-3 was low (46%); therefore, it is 

difficult to say that it has a common ancestor; however, in 

the case of MR2-3, they are bacteria isolated from a 

healthy person, and domestic isolates forming the same 

group also have a genetic correlation that is isolated, 

irrespective of the disease. In particular, results analysis of 

a prior study (Diab et al. 2012), MR2-3 existed alone 

because of its low genetic association with other C. 

perfringens; however, the four strains isolated in this 

study (KSJ-04, KSJ-06, KSJ-07, KSJ-21) did not have a 

common ancestor, but showed high genetic relevance; 

thus, the cluster was formed by several strains rather than 

alone. 

As per an analysis of the epidemiological relationship 

between domestic isolates, C. perfringens was classified 

into four groups. The divided groups did not show any 

difference based on the location where the C. perfringens 

were isolated, such as inland or Jeju Island in South 

Korea. Moreover, there was no difference as per type in 

comparison with the standard strains. However, group 4 

had a lower systematic relationship than the other three 

groups. This is analyzed with the same results as cluster 

13 shown in the comparison and analysis with the 

standard strains. 

In addition, the bacteria (KSJ-15, KSJ-25) isolated 

from the place where foal dead took place appeared 

together in group I. KSJ-15 and KSJ-25 belong to C. 

perfringens type C with β-toxin (CPB), and type C causes 

intestinal toxemia in infected foals, causing acute death 

within 1–2 d of birth (Diab et al. 2012). The C. 

perfringens type C isolated in Korea is characterized in 

that all strains except KSJ-03, which form a group alone, 

are formed in the same group I. 

In conclusion, we attempted to analyze the 

epidemiological relationship centering on the strains 

isolated from the feces of horses and from contaminated 

soil in South Korea. We confirmed that the domestic 

isolates of human beings and animals had an 

epidemiologic correlation, that is, there was no regional 

genetic relationship between the strains. However, we 

found a close genetic relationship between the strains 

causing the disease. In addition, we confirmed that it is 

systematically close to the standard strains isolated from 

Europe (Camargo et al. 2022).  

In this study, MLST analysis was performed using 

strains that were isolated from domestic horses, and 

various genetic relationships were derived; however, these 

findings are limited to horses. C. perfringens is a 

representative bacterium that causes diseases not only in 

humans, but also in animals. Thus, it is necessary to 

derive MLST results for each species, such as cattle, pigs, 

and chickens in the future to compare the genetic 

characteristics of pathogenic strains. Research focusing on 

such phylogenetics is considered useful for performing 

epidemiological investigations or establishing prevention 

methods for diseases in the future. 
 

Conclusions 

MLST of C. perfringens results using MEGA 6.0 

showed that total 13 clusters were formed in the 

phylogenetic tree of the housekeeping genes sequence of 

the standard strains, and the Korea Isolate Ju (KSJ) strains 

were classified into eight types (cluster 4, cluster 5, cluster 

6, cluster 7, cluster 8, cluster 11, cluster 12, and cluster 

13). The KSJ strains were categorized into four groups. 

Each group had a high bootstrap value (>90%). These 

results for C. perfringens are considered to be helpful for 

performing epidemiological investigations and 

establishing prevention methods for diseases in the future. 
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