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ABSTRACT 
 

Clostridial infection is associated with significant health problems in poultry today, as its enteritis affects intestinal 

integrity in poultry flocks and may cause considerable losses, which caused by Clostridium perfringens that found all 

over the world, so fighting this infection is a continuing challenge for the poultry sector. Preventive actions using 

dedicated products are a valuable solution to maintain healthy gut flora. In this study the prevalence of Clostridium 

perfringens was detected in different chicken flocks at a rate of 32%. Also, toxin-typing showed presence of cpa, cpb, 

etx, iap and cpe toxins among the isolates which mainly associated with necrotic enteritis cases. Net-B toxin is a novel 

toxin that had been recently identified in virulent avian C. perfringens isolates and it presence potentiate the necrotic 

lesions and destroy the enterocytes. Antimicrobial patterns showed high resistance against most common antibacterial 

drugs as β-lactams, aminoglycosides, macrolides and tetracyclines. NetB toxin harboring isolates, originating from 

diseased broiler, layer and breeder chickens showed the lowest minimum inhibitory concentration MICs values for the 

penicillin from β-lactams and tylvalosin from macrolides.  
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INTRODUCTION 

 

Clostridium belongs to Clostridiaceae family which 

contains more than 203 species. Clostridium perfringens 

(C. perfringens) is the most commonly isolated species, 

which is classified to five types according to major lethal 

toxins they produce (Koneman et al. 1997). Clostridium 

diagnosis at bacteriological and molecular base still 

difficult till now for several reasons, including their 

specific growth (Collins et al. 1994). Clinically the 

important Clostridium species that associated are with 

clinical aspects in humans, animals and birds ranged from 

40-50 species that produce a variety of toxins which leads 

to the distinctive clinical features of the diseases they 

cause (Hatheway 1990). PCR-based methods for C. 

perfringens genotypes are accumulating as more 

diagnostic and research laboratories adopt for toxin gene 

detection. There were various genotypes by geographic 

region, although C. perfringens type A remains the most 

commonly isolated type overall (Garmory et al. 2000), 

which act as the causative agent of necrotic enteritis, and 

its clinical form is most often seen in broilers but may also 

be seen in broiler breeders and layers kept on litter 

system, while subclinical form appear in the intestine and 

liver. The disease is characterized by distinct ulcers and 

necrosis in the mucosa of the anterior small intestine and 

hepatitis (Fossum et al. 1988; Kaldhusdal and Hofshagen 

1992). C. perfringens-related hepatitis is characterized by 

cholangiohepatitis or focal necrosis in the liver and bile 

ducts, leading to obstruction of the bile ducts (Randall 

1991), as the pathogens migrate from duodenum to liver 

through bile ducts or via liver veins (Sasaki et al. 2000). 
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Virulent C. perfringens isolates produce 16 protein toxins 
that are important for the development of different 
diseases, such as food poisoning, antibiotic associated 
diarrhea, fatal gas gangrene, enterotoxaemia, and 
hemorrhagic gastroenteritis (Jihong et al. 2016). C. 
perfringens α-toxigenic strains of are the most common 
type isolated from chickens suffering from necrotic 
enteritis (Timbermont et al. 2009), but recently netB is a 
new toxin, in avian C. perfringens type A strains 
(Keyburn et al. 2008). Alpha toxin is a phospholipase that 
hydrolyzes phospholipids and promotes membrane 
disorganization, also hydrolysis of lecithin results in 
stimulation of the arachidonic acid cascade that induces 
the synthesis of inflammatory mediators which causes 
blood vessel contraction, platelet aggregation and 
myocardial dysfunction, leading to acute death, while beta 
toxin induces hemorrhagic necrosis of the intestinal 
mucosa (Titball et al. 2000; Awaad et al. 2019). The most 
common predisposing factors for NE include 
environmental stress, high stocking density, concurrent 
infection with IBD and coccidiosis, high protein and fat 
levels in diet change in mucus production and gut transit 
time and other dietary factors including lectins, trypsin 
inhibitors, tannins and mycotoxins (Prescott et al. 2016), 
so NE has been controlled by reducing exposure to risk 
factors such as coccidiosis, unsuitable diets and adding 
antibiotics in the feed and water of poultry (Gabriel et al. 
2003). Unfortunately, antibiotic resistance in bacteria may 
make the commonly used antibiotics less effective 
(Yegani and Korver 2007), so antibiotic growth promoters 
(AGPs) have been banned from animal feed worldwide to 
avoid the spread of antimicrobial resistance and this has 
contributed to the higher prevalence of economically 
important diseases such as necrotic enteritis (Van 
Immerseel et al. 2009). The present study aimed to assess 
the prevalence of netB harboring C. perfringens among 
Egyptian chicken flocks either broiler, or breeder with 
special attention to its antimicrobial susceptibility and 
minimum inhibitory concentration. 
 

MATERIALS AND METHODS 

 
Isolation and Identification of C. Perfringens 

During 2020, three hundred intestinal contents of 
enteritis lesions from broiler (n=160), layer (n=100) and 
breeder (n=50) chicken’s suspected cases from 40 flocks 
(broilers (n=25), layer (n=30) and breeder (n=10) were 
inoculated into tryptone proteose peptone glucose, then 
transfer to fluid thioglycollate (Becton, Dickinson, USA) 
and plated onto TSC agar (Oxoid, UK) at 37oC in an 
anaerobic condition (Martin et al. 2009). Colonies were 
further sub-cultured on sheep blood agar and checked 
visually for double-hemolysis zone surrounding the 
colonies of C. perfringens and confirmed biochemically 
using API 20 A Anaerobes system. The recovered isolates 
bacterial suspensions were then frozen in BHI broth with 
20% glycerol at –80°C (Quinn et al. 2011). 
 

C. perfringens Toxin Typing by using PCR Assay 

The boiling technique according to Kanakaraj et al. 
(1998), was used to extract DNA from the isolates and the 
primers for toxins typing were cpa, cpb, etx, iap, cpe 
according to Yoo et al. (1997), while netB toxin primers 
were used according to Datta et al. (2014) at which selected 

netB toxin positive isolates were sequenced and accessed 
on Genbank from broiler, and breeder chicken flocks. 

 
Antimicrobial Susceptibility Testing 

Agar disc diffusion method were used for  tested 
antimicrobial susceptibility C. perfringens strains at 37oC 
overnight in anaerobic conditions using the following 
antimicrobial agents (Oxoid, Hampshire, UK) were tested: 
penicillin G (10U), penicillin V (30µg), ampicillin (10µg), 
amoxicillin (20µg), ceftifur (30µg), bacitracin (10µg), 
lincomycin (30µg), florphenicol (30µg), clindamycin 
(2µg), erythromycin (15µg), tylosin (30µg), tilmicosin 
(15µg), spiramycin (100µg), tylvalosin (0.6µg), flumequine 
(30µg), ciprofloxacin (5µg), enerofloxacin (5µg), 
difloxacin (10µg), oxytetracycline (30µg), doxycycline 
(30µg), metronidazole (30µg) rifampicin (5µg), 
vancomycin (5µg), colistin(10µg), neomycin (30µg), 
gentamycin (10µg), streptomycin (10µg), spectinomycin 
(100µg) and trimethoprim-sulfamethoxazole (25µg) 
(Perelman et al. 1991; BSAC 2011). 
 
Measuring MICs of Clostridium perfringens net-B 

Toxins Isolates 

Brucella broth was used for broth micro dilution 
susceptibility testing. Refreshes of C. perfringens strains 
from frozen condition by subculture twice on TSA 
supplemented with 5% defibrinated sheep blood followed 
by inoculation into brucella broth supplemented with 
Oxyrase to generate anaerobiosis. Inoculum was grown at 
37oC for 24±12h then diluted in brucella broth to a 0.5 
McFarland turbidity standard. Sixteen antibiotics were 
obtained from Sigma (St Louis, MO) as the following: 
penicillinV and G, ampicillin, amoxicillin, ceftifur, 
bacitracin, lincomycin, tylosin, tilmicosin, tylvalosin, 
ciprofloxacin, enrofloxacin, difloxacin, flumequine, 
vancomycin, metronidazole and rifampicin and Stock 
solution prepared according to the guidelines of the 
producer. Stocks were either frozen or freshly prepared and 
subsequent dilutions of the stock solutions were performed 
using the procedure listed in NCCLS (CLSI 2018). 
 
Statistical Analysis 

Data were analyzed by with SPSS version 7.5 
software. All values were expressed as the mean±SD. 
significant differences between the groups were statistically 
analyzed by one way analysis of variance (ANOVA). A 
statistical difference of P<0.05 was considered significant. 

 
RESULTS 

 

The prevalence of C. perfringens during the different 
season of 2020 was 37% distributed as the following in 
broilers (42%), layers (38%) and breeders (44%) with 
high incidence in autumn (30%) followed in winter 
(26%), spring (22%) and summer (19%). Toxin typing of 
the recovered isolates by using PCR assay revealed that; 
cpa toxin in broilers (73%), layers (79%) and breeders 
(68%). Whereas cpb toxins was found in 25% broilers, 
66% layers and 45% breeders. The etx toxin was detected 
in 14.5% broilers, 32% layers and 18% breeders. The iap 
toxin was noted in 27% broilers, 37% layers and 27% 
breeders. The cpe and netB toxin were found in 45 and 
82% broilers, 53 and 89% layers and 45 and 90% 
breeders, respectively. 

https://en.wikipedia.org/wiki/Minimum_inhibitory_concentration
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Table 1: Disk diffusion antimicrobial susceptibility of Egyptian C. perfringens isolates recovered from various chicken flocks 

Antimicrobials Broilers (n=55) Layers (n=38) Breeders (n=22) 

S/R + No. + % S/R + No. + % S/R + No. + % 

Penicillin G S 40 73 S 28 74 S 15 68 
Penicillin V S 55 100 S 38 100 S 22 100 
Ampicillin S 30 54.5 S 30 79 R 22 100 
Amoxicillin S 45 82 S 30 79 S 18 82 
Ceftifur S 25 45 S 15 39 S 12 55 
Bacitracin S 25 45 R 20 53 R 15 68 
Lincomycin S 25 45 R 20 53 R 15 68 
Clindamycin R 55 100 R 28 74 R 22 100 
Erythromycin S 15 27 R 38 100 R 22 100 
Spiramycin  R 55 100 R 38 100 R 22 100 
Tylosin S 25 45 S 18 47 S 12 55 
Tilmicosin S 20 37 S 15 39 S 10 45 
Tylvalosin S 40 73 S 25 66 S 15 68 
Ciprofloxacin S 15 27 R 38 100 R 22 100 
Difloxacin S 15 27 R 38 100 R 22 100 
Flumequine S 15 27 R 38 100 R 22 100 
Oxytetracycline R 55 100 R 38 100 R 22 100 
Doxycycline R 55 100 R 38 100 R 22 100 
Chlortetracycline R 55 100 R 38 100 R 22 100 
Vancomycin  S 55 100 S 38 100 S 22 100 
Rifampicin S 30 54.5 R 30 79 R 18 82 
Metronidazole S 30 54.5 R 20 53 R 18 82 
Colistin R 55 100 R 38 100 R 22 100 
Florphenicol R 55 100 R 38 100 R 22 100 
Spectinomycin R 55 100 R 38 100 R 22 100 
Neomycin R 55 100 R 38 100 R 22 100 
Gentamycin R 55 100 R 38 100 R 22 100 
Streptomycin R 55 100 R 38 100 R 22 100 
Trimethoprim-sulfamethoxazole R 55 100 R 38 100 R 22 100 

R: Resistant S: Susceptible. 

 

Three netB toxin harboring C. perfringens strains 

were sequenced and accessed on Genbank under code: 

MW925054 from broiler, MZ382848 from layer and 

MW925055 from breeder chicken flock respectively. 

Antimicrobial susceptibility patterns by disk diffusion 

methods in Table 1 showed that the all recovered isolates 

were sensitive to penicillin, amoxicillin, tylvalosin and 

vancomycin, while were resistant for clindamycin, 

spiramycin, oxytetracycline, doxycycline, chlortetracycline, 

colistin, florphenicol, spectinomycin, neomycin, gentamycin, 

streptomycin and trimethoprim-sulfamethoxazole. The 

other antibiotics showed sensitivity against broiler isolates 

only as lincomycin, erythromycin, ciprofloxacin, 

enrofloxacin, difloxacin, flumequine and rifampicin.  

Also, there were some isolates sensitive to amoxicillin, 

ceftifur, tylosin, and tilmicosin. The minimum inhibitory 

concentration values “MICs µg/ml’’ of net-B toxin 

isolates recorded in (Table 2) which showed that the 

lowest values were for penicillin MIC=0.25; MIC50=0.44; 

MIC90=0.82 against C. perfringens recovered from broiler 

chicken flocks, while values against breeder were 0.32, 

0.52 and 1µg/ml respectively, followed by tylvalosin 

values 0.25, 0.82 and 1.2µg/ml against all isolates, while 

the other examined antimicrobials showed high MIC 

values. 

 

DISCUSSION 

 

Necrotic enteritis (NE) caused by toxigenic strains of 

C. perfringens costs the worldwide poultry community an 

estimated $2 billion annually due to costs of antimicrobial 

prophylaxis, loss of weight gain and inefficient feed 

conversion (Van Immerseel et al. 2009). Elimination of 

routine antibiotic use has been associated with increased 

incidence of NE (Cooper and Songer 2009) as the 

prevalence of C. perfringens could be attributed to the 

unsanitary conditions, poor hygienic measures (McClane 

et al. 2006). In current study the prevalence of C. 

perfringens was 37% in different Egyptian chicken flocks 

at which 42% in broiler, 38% in layer and 44% in breeder 

with high incidence in autumn 30% and in winter 26% 

than spring and summer which may be due to 

crowdedness and accumulation behavior of chickens in 

cold weather, also physiological stress  act as an important 

predisposing factor to NE due to disturbance in 

corticosteroids hormones which corresponded to increased 

densities of C. perfringens in the small intestine and 

weight gain impairment in chickens, this emphasizes the 

importance of managing stress to optimize chicken health 

(Sarah et al. 2020). 

Recently the NE pathogenesis in poultry has been the 

subject of considerable investigation, following 

identification of the novel pore forming toxin netB on a 

42kb plasmid-encoded pathogenicity locus (NELoc-1) 

harbored specifically by NE strains (Keyburn et al. 2006; 

Keyburn et al. 2008) which were all highly conserved in 

both nucleotide and amino acid sequence (Menestrina et 

al. 2001) and the recovered C. perfringens strains from 

necrotic enteritis lesions were netB-positive, so these 

results provide a further evidence that netB is an essential 

virulence factor in the pathogenesis of necrotic enteritis 

(Nauerby et al. 2003). There was a strong correlation 

between cpb2 gene and netB gene (Crespo et al. 2007; 

Martin and Smyth 2009; Abildgaard et al. 2010). 
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Table 2: Minimum inhibitory concentration values (μg/mL) of Egyptian C. perfringens isolates harboring net-B toxin recovered from 
broiler, layer and breeder chicken flocks 

C. perfringens origin from  Broilers Layers Breeders 

MIC values (μg/mL) MIC MIC50 MIC90 MIC MIC50 MIC90 MIC MIC50 MIC90 

Penicillin G 0.5 1.5 1.82 1.5 2.5 3.6 2.3 4.2 4.4 
Penicillin V 0.25 0.44 0.82 0.32 0.48 0.92 0.32 0.52 1.00 
Ampicillin 0. 56 2.1 2.8 2.2 3.5 5.5 2.3 4.2 8.3 
Amoxicillin 0.52 0.62 1.2 0.83 1.5 1.8 0.72 1.2 1.8 
Ceftifur 0.58 2.2 4.5 2.2 4.4 8.3 2.2 4.4 8.3 
Bacitracin 0.56 2.3 3.6 2.5 4.5 5.4 2.2 4.4 6.3 
Lincomycin 0.57 4.2 8.4 2.1 3.6 8.4 2.1 3.6 8.4 
Tylosin 1.2 2.3 4.4 1.2 2.3 4.4 1.2 2.6 4.2 
Tilmicosin 1.2 2.3 4.4 1.5 2.5 4.8 1.4 2.8 4.5 
Tylvalosin 0.25 0.82 1. 2 0.25 0.82 1. 2 0.25 0.82 1. 2 
Ciprofloxacin 2.8 4.3 8.4 R R R R R R 
Difloxacin 2.8 4.3 8.4 R R R R R R 
Flumequine  2.8 4.3 8.4 R R R R R R 

Vancomycin  0.25 1.2 1.8 0.25 1.2 1.8 0.25 1.3 1.8 
Rifampicin 1.33 4.3 6.2 1.8 3.5 4.5 2.3 4.3 8.4 
Metronidazole 0.52 2.5 4.3 1.6 2.8 4.2 1.2 2.4 3.6 

R: resistant. Dilution factor: 0.25-512µg/mL. 
 

NE develops when C. perfringens establish and 

multiply in the chicken's intestinal tract due to reduction 

of intestinal motility with mucosal damage and leakage of 

serum proteins into the intestinal lumen (Drew et al. 

2004). C. perfringens has a generation time of 8 to 10min, 

so can increase very quickly (Stevens and Bryant 2002). 

In the present study, toxin typing of the recovered isolates 

revealed that cpa, cpb, etx, iap and cpe toxin in broiler 

isolates represent 73, 25, 14.5, 27 and 45%, respectively 

and in layers were 79, 66, 32, 37 and 53%, respectively 

while in breeder isolates 68, 45,18, 27 and 45%, 

respectively. Toxin typing of C. perfringens is critical for 

understanding of the epidemiology criteria of C. 

perfringens infections and may be helpful in the 

development of effective preventive measures (Nowell et 

al. 2010) as the release of these toxins is believed to play a 

major role in determining pathogenesis properties of C. 

perfringens (Ronco et al. 2017). Datta et al. (2014) 

showed that out of 30 C. perfringens isolates from healthy 

birds, 33.3% were positive for α toxin alone and 6.7% for 

β-2 toxin alone. In addition, seven (23.3%) isolates were 

positive for both α and β-2 toxins. In case of the diseased 

birds, 16 (53.3%) isolates were positive for alpha toxin 

alone and 2 (6.7%) for β-2 toxin alone. Ten (33.3%) 

isolates were positive for both α and β-2 toxins. Thus, 19 

and 28 isolates from healthy and diseased birds 

respectively were toxin producing. Agrawal made similar 

observations et al. (2009) who reported 39.2% isolates of 

C. perfringens to be positive for α toxin alone and 32.10% 

isolates were positive for both α and β toxins. Fan et al. 

(2016) reported that the C. perfringens type A isolates 

expressed only the cpa gene encoding for alpha toxin. 

Several studies have indicated that cpe-positive strains of 

C. perfringens from poultry occur in low number and can 

be less than 5% of global C. perfringens isolates (Zhang et 

al.2018). This study showed that the presence of α and β-2 

toxin producing strains of C. perfringens in healthy as 

well as enteritis-affected broiler chickens. There was an 

increase in number of the toxin producing isolates from 

diseased birds.  

Higher percentage of α and beta-2 toxin gene 

producing C. perfringens strains in diseased broiler birds 

indicates its possible role in pathogenesis of enteritis. 

Alpha toxin hydrolyzes lecithin a major component of the 

cell membrane and thus destroys the red blood cells, 

platelets and muscles leading to the myonecrosis. Beta 

toxin induces hemorrhagic necrosis of the intestinal 

mucosa. Australian strain of C. perfringens type A 

harbored NetB was isolated from necrotic enteritis (NE) 

affected broiler chicken (Keyburn et al. 2010). In the 

present study, traceability of net-B toxins in the recovered 

isolates showed that net-B toxin distribution in broiler 

isolates 82%, layer isolates 89% and breeder isolates 90%. 

Sequencing of three isolates and accessesion numbers on 

Genbank and under code: MW925054 from broiler, 

MZ382848 from layer and MW925055 from breeder 

chicken flock respectively. Net-B is a pore forming toxin 

with structure equal to 3.9 Angstrom (Savva et al. 2013), 

which can damage the phospholipid membrane bilayer of 

both human and animal cells, causing an influx of ions 

(i.e., Na+, Cl, Ca2+that leads to osmotic cell lysis 

(Keyburn et al. 2010; Sergio et al. 2014). Interestingly, 

all netB-positive isolates were from flocks with the 

subclinical form of NE, with a moderate increase of 

mortality rate but an absence of typical pathologic 

findings of enteritis. In contrast, when severe NE was 

observed during autopsy of deceased birds, no netB gene 

was detected (Francesca et al. 2019). 

Antibiotic as β-lactams, aminoglycosides, macrolides 

and tetracyclines used in broiler farms for therapeutic 

purposes of enteric diseases, particularly necrotic enteritis 

Penicillins as a β-lactams members are known to be 

particularly active against C. perfringens as resistance 

against penicillin is very rare and β-lactamase has not 

been demonstrated with three days as minimum duration 

of treatment, however longer applications may be required 

(Hughes et al. 2008). In the current study, the 

antimicrobial sensitivity test showed that all isolates were 

100% sensitive for penicillin, amoxicillin, tylvalosin and 

vancomycin, while were resistant for clindamycin, 

spiramycin, oxytetracycline, doxycycline, chlortetracycline, 

colistin, florphenicol, spectinomycin, neomycin, gentamycin, 

streptomycin and trimethoprim-sulfamethoxazole. 

Recently, Gad et al. (2011) determined MIC of 16 

antibiotics for 100 C. perfringens isolates collected 

between 2008 and the results revealed that there were no 
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isolates were resistant β-lactam antibiotics, lincospectin, 

tylosin, doxycycline, tetracycline, trimethoprim/ 

sulfamethoxazole, lincomycin, and tilmicosin with low 

frequency of resistance was detected against erythromycin 

and tiamulin with 5 and 20%, respectively, while the 

highest incidence of resistance were spectinomycin, 

neomycin and colistin with 74, 94 and 100%, respectively. 

In economic point of view controlling of necrotic enteritis 

cases even clinical or subclinical form in commercial 

poultry flocks become urgent to overcome its losses in 

body weight gain and costs of medication (Kaldhusdal 

and Løvland 2000; Skinner et al. 2010), so strategies to 

reduce the incidence of clostridial infections become 

important to avoid economic losses and increase the 

profitability (McReynolds et al. 2009). 

Finally, the present study survey of the minimum 

inhibitory concentration of net-B toxins isolates at which 

the lowest values were for penicillin MIC90=0.82 against 

C. perfringens recovered from broiler chickens flocks, 

while values against layers and breeders were 1µg/ml 

respectively, followed by tylvalosin MIC90=1.2µg/ml 

against all isolates, while the other examined 

antimicrobials showed variable values. Resistance of C. 

perfringens the most common antibiotics become 

recorded (Shojadoust et al. 2010), and also there were 

MDR isolates as detected in Iran 34.17% (Akhi et al. 

2015), this may be due to the wide spread of the 

antimicrobials in combating infections. Resistance rate of 

C. perfringens to tetracycline 66and 56.2% (Tansuphasiri 

et al. 2005) and 87.5% to neomycin (Shojadoust et al. 

2010), while the percentage of resistance to β-lactams was 

less than 7% (Silva et al. 2014; Hamza et al. 2017; Chon 

et al. 2018; Mwangi et al. 2019).  

 

Conclusion 

C. perfringens has been shown to develop multiple 

drug resistance mainly in winter and autumn season, 

indicating that the treatment for this bacterium is quite 

challenging, so must depend on MICs values for common 

used antibiotics which revealed that penicillin is the drug 

of choice against isolates from different flocks. 
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