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ABSTRACT 
 

FSHβ plays an important role in the reproductive performance of pigs, but there are no studies on its protein structure and 

function. In this study, bioinformatics tools were used to predict the physicochemical properties, secondary and tertiary 

structure, hydrophobicity/hydrophilicity, transmembrane domain, and sites of phosphorylation and glycosylation of 

signal peptide FSHβ protein of sows. The results showed that the number of amino acids of FSHβ was 185, that is, the 

theoretical isoelectric amino acid point was 53.8, the instability index was 46.23, and the average hydrophilicity 

coefficient was 0.732. FSHβ protein was found to be a hydrophobic protein without a transmembrane domain, with 33 

phosphorylation sites. None of the signal peptides was found to be distributed in the inner complete sequence. The 

secondary structure was mainly composed of α-helix, extended strand, β-turn, and random coil, with values of 29.97, 

27.53, 10.10 and 32.40%, respectively. In summary, this study suggests that the amino acid sequence (988~1146aa) of 

FSHβ can be used to express antigens. It provides a reliable basis for further study of FSHβ protein function, purification 

of FSHβ protein, preparation of FSHβ antibody, and drug screening to improve reproductive performance of pigs. 
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INTRODUCTION 

 

Reproductive traits play a key role in the productive 

performance of the pigs. The breeding performance of sows 

is an important biological index to measure the benefits of 

pig farms, and it is a key indicator of factor that restrict the 

improvement of breeding performance and production 

efficiency of sows at large-scale sow farms (Wang et al. 

2018; Hickmann et al. 2021). In pigs, reproductive activity 

is controlled and regulated by the brain-pituitary-gonadal 

(BPG)-endocrine axis (Koketsu and Iida 2017). The classical 

reproductive hormones of the BPG-axis are gonadotropin-

releasing hormone (GnRH), pituitary gonadotropins (GtHs), 

and gonadal steroids, as along-with a host of other regulatory 

molecules that act on the BPG-axis in a paracrine/autocrine 

manner (Khan and Chaudhary 2021; Uenoyama and 

Tsukamura 2023). The pars distalis of the anterior pituitary 

gland secretes the GtHs, which are glycoproteins in nature 

(Weiss et al. 2019). The both pituitary gonadotropins, 

luteinizing hormone (LH) and the follicle-stimulating 

hormone (FSH), are complex heterodimer glycoproteins, 

composed of a common alpha (α) subunit and a species-

specific beta (β) subunit (Sand et al. 2013; Gagnon et al. 

2018). These subunits bind non-covalently to form a 

biologically active dimeric peptide hormone (Boime and 

Ben-Menahem 1999; Gilbert et al. 2018). 

However, the FSHβ gene is linked to many other genes 

controlling pig litter size and is the main gene controlling 

this trait in pigs (Prabhudesai et al. 2021). FSHβ plays a key 

role in follicular development and estrogen production in 

female animals, and the level of estrogen in the peripheral 

blood of sows and other animals during estrus is a decisive 

factor for their reproductive performance (Koketsu and Iida 

2017; Gagnon et al. 2018; Simon et al. 2019). At the same 

time, a recent study has shown that FSH can be used as a 

useful marker for the identification of ovarian cytoma 

(Matsuoka et al. 2022). Moreover, LHR expression has been 

detected in the blood of sows at the estrus stage, indicating 

that the expression of LHR in relevant tissues is related to 

the changes occurring during estrus cycle in the animal 

(Guan et al. 2021; Kopycińska et al. 2022). In the current 

study, bioinformatics analysis was performed to have a 

reference for the effective prokaryotic extraction/expression 

and protein purification of the FSHβ gene and to provide a 

strong basis for the association between the FSHβ gene and 

the reproductive performance of sows. 
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MATERIALS AND METHODS 

 

Amino Acid Sequences 
The complete amino acid sequences of FSHβ protein 

(Species, Sus scrofa (pig), NC_010444, Gene id: 396895) 

were obtained from the National Center for Biotechnology 

Information (NCBI) database 

(https://www.ncbi.nlm.nih.gov/). 

 

Prediction of Physicochemical Parameters 
The online FSHβ STAT3 proteins was used for the 

prediction of physicochemical parameters including the 

amino acid composition, molecular weight, total atomic 

number, theoretical isoelectric point, instability index, 

extinction coefficient, parent level mean, and other 

physicochemical parameters of FSHβ protein. 

 

Prediction of Hydrophilicity, Hydrophobicity, and 

Transmembrane Domains 

The hydrophilicity and hydrophobicity of the FSHβ 

protein was analyzed by the Kyte and Doolittle algorithm 

of the ExPASy server ProtScale module 

(https://web.expasy.org/protscale/). The transmembrane 

domains of the FSHβ proteins were further analyzed by the 

TMHMM Server 

(http://www.cbs.dtu.dk/services/TMHMM-2.0/).  

 

Analysis of Phosphorylation and Glycosylation Sites 
The potential N-linked phosphorylation and 

glycosylation sites of STAT3 were predicted using 

NetPhos 3.1 (http://www.cbs.dtu.dk/services/NetPhos/) 

and NetNGlyc 1.0 Server 

(http://www.cbs.dtu.dk/services/NetNGlyc/), respectively.  

 

Subcellular Localization and Signal Peptide 

Identification 
The subcellular localization of FSHβ protein was 

predicted from the amino acid sequence software 

“Predictprotein” available online 

(https://www.predictprotein.org/). The presence and 

location of signal peptide cleavage sites in the amino acid 

sequences were predicted by the SignalP 4.0 

(http://www.cbs.dtu.dk/services/SignalP-4.0/) with a 

D-cutoff score of 0.5. 

 

Secondary and Tertiary Structure Prediction 

The secondary and tertiary structures of the FSHβ 

protein were predicted by the SOPMA (https://npsa-

prabi.ibcp.fr/NPSA/npsa_sopma.html) and 

SWISSMODEL (https://swissmodel.expasy.org/) 

software, respectively. In addition, the conserved domain 

of FSHβ protein was analyzed in the Conserved Domain 

Database (CDD) of NCBI. 

(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). 

 

RESULTS 

 

Physical and Chemical Properties 

The online prediction and analysis of the physical and 

chemical properties of FSHβ3 protein revealed the presence 

of 149 amino acids, with the molecular weight of 12398.89 

and total number of atoms as 1574. The molecular formula 

was   C449H751N149O190S35,  with  the  theoretical  isoelectric  

 
 

Fig. 1: Hydrophilicity prediction: Positive scores specify 

hydrophobicity, while negative scores signify hydrophilicity. 

Higher the absolute value, higher hydrophilicity degree is.  
 

 
 

Fig. 2: Transmembrane domain of FSHβ protein. The dark yellow 

line represents the FSHβ protein, the yellow line below represents 

the outer cell membrane, and the blue line represents the inner cell 

membrane. 
 

point was 5.38. The instability index was computed to be 

46.23, which classified the protein as unstable. The aliphatic 

index was 24.16 and the grand average of hydropathicity 

(GRAVY) was 0.732, which indicated that FSHβ may be a 

hydrophobic protein. 
 

Hydrophilicity and Hydrophobicity and 

Transmembrane Domains 
The evenly distributed hydrophobic amino acids were 

found to form most of the FSHβ polypeptide. The software 

analysis showed that the highest hydrophobicity score of 

FSHβ protein was -0.278 and the highest hydrophilicity 

value was 1.911. The tide chain and the whole polypeptide 

chain showed hydrophobic amino acids (Fig. 1). This was 

also stable with the average hydrophobicity index already 

projected by the ExPASy ProtParam online analysis 

system. No evidence of a hydrophobic region was found in 

FSHβ, so it was speculated that there is no transmembrane 

region in it. TMHMM analysis showed that there was no 

obvious transmembrane region in the amino acids sequence 

of FSHβ protein. 
 

Sites of Phosphorylation and Glycosylation 
A gene expression regulatory protein, directly linked 

to the functions, is an important characteristic of 

phosphorylation. The results of predictive analysis of the 

phosphorylation site of FSHβ protein using the 

bioinformatics software NetPhos 3.1 showed that in the 

FSHβ peptide chain when the threshold of potential 

phosphorylation sites was 0.5, there were multiple 

phosphorylation sites of FSHβ protein (Fig. 3), of which 

serine (Ser), threonine (Thr) and tyrosine (Tyr) had 33, 16 

and 6 sites, respectively. As is evident in Fig. 4, there were  

https://www.ncbi.nlm.nih.gov/gene/396895
https://www.ncbi.nlm.nih.gov/
https://npsa-prabi.ibcp.fr/NPSA/npsa_sopma.html
https://npsa-prabi.ibcp.fr/NPSA/npsa_sopma.html
https://swissmodel.expasy.org/
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
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Fig. 3: Phosphorylation site 

of FSHβ protein. Serine 

phosphorylation sites are 

shown by red lines at 33 sites 

(3, 20, 40, 51, 54, 57, 59, 65, 

71, 74, 76, 82, 85, 88, 111, 

124, 146, 148, 203, 208, 214, 

217, 220, 224, 225, 230, 236, 

244, 254, 255, 257, 266, 

283), while green and blue 

lines indicate threonine 

phosphorylation (16 

positions: 24, 27, 29, 48, 73, 

84, 142, 151, 158, 172, 182, 

205, 232, 235, 245, 258) and 

tyrosine phosphorylation 

sites (6 sites: 58, 139, 141, 

154, 204, 218), respectively. 

The threshold is indicated by 

purple lines. 

 

 
 

Fig. 4: Prediction of 

glycosylation sites. The 

potential glycosylation sites are 

shown by green lines, while 

threshold is indicated by purple 

lines. 

 

Fig. 5: Signal peptide of 

FSHβ protein. The red, green 

and blue lines represent C, S 

and Y scores. 

 

two n-glycosylation reformed sites at 25(0.7746) NITI and 

285(0.5569) NCSD, indicating that these sites may be 

encompassed at more than one peptide. 
 

Subcellular Localization and Signal Peptide Identification 

Results obtained from the neural network algorithm 

(Fig. 4) indicated that there was a 0.0282 probability of 

having sec signal peptide, while no signal peptide 

probability was 0.9718. These results indicate that this 

could not be a secretory protein, which was coherent with 

the results of glycosylation.  

Secondary and Tertiary Structure 
The prediction of the secondary structure of FSHβ 

protein by SOPMA software showed that there were 86 α-

helixes, 79 extended strands, 29 β-turns and 93 random 

coils in the FSHβ amino acid sequence, accounting for 

29.97, 27.53, 10.10 and 32.40% of the secondary structure, 

respectively (Fig. 6). According to the prediction of 

SWISS-MODEL, there were many α-helixes in the tertiary 

structure of FSHβ protein; these were mainly α-helix and 

random coil (Fig. 7), which was basically coherent with the 

estimation of secondary form. 
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Fig. 6: FSHβ secondary 

structure. H = α-helix; C = 

Disordered crimped state. 

Blue = α-helix; purple = 

irregular crimping; red = 

extension chain and green = 

β-rotation. 

 

 
 

Fig. 7: Tertiary structure of FSHβ protein. Red colour indicates 

α-helix, yellow indicates β-turning angle, green indicates Random 

coil, and blue indicates transmembrane region. 

 

 
 

Fig. 8: Construction of FSHβ gene phylogenetic tree. The red 

triangle marks the species in this study. 

 

Overall Analysis and Phylogenetic Analysis 

Sequencing results and the NCBI 

(https://www.ncbi.nlm.nih.gov/) published homologous 

gene sequences, and built the system evolutionary tree, as 

shown in Fig. 8. The results showed that the homology 

between the porcine FSHβ gene and the porcine nucleotide 

sequence was 100%. 

 

DISCUSSION 

 
Reproductive traits are known to play an important 

role in the productive performance of pigs (Li et al. 2017b; 

Bovula et al. 2021; Ma et al. 2022). Published literature 

indicates that FSHβ is directly linked to reproductive 

performance (Zhao et al. 1998; Li et al. 2017a; Ye et al. 

2018; Petrovas et al. 2020; Morton et al. 2023). In the 

present study, the bioinformatics analysis of FSHβ gene 

and its encoded protein was carried out, and the prediction 

of the property and structure of FSHβ protein provided the 

basis for the research and development and scientific basis 

of reproductive performance traits for the pig industry 

(Chen et al. 2018; Niu et al. 2019; Stamatiades et al. 2019; 

Lizneva et al. 2019; Zhu et al. 2020). 

Bioinformatics has been widely and wisely used in the 

prediction of protein functions, gene recognition, 

determination of the physiological range of proteins, and 

prediction of advanced structure of protein to ensure that 

predicted results are accurate and efficient (Trevisan et al. 

2019; Song et al. 2021; Brandes et al. 2022). In the present 

study, the basic information of FSHβ protein was obtained 

by bioinformatics analysis for further studies (Bernard and 

Tran 2013; Prabhudesai et al. 2021). Combined 

physicochemical properties of FSHβ protein showed that 

the protein was hydrophobic and did not have a 

transmembrane domain and also without the presence of 

signal peptide, which indicates that FSHβ protein may 

belong to wabbly hydrophilic non-secretory proteins 

(Kanasaki et al. 2013; Wang et al. 2021). 

The FSHβ protein can freely diffuse into prokaryotic 

cells after its expression. In the prediction of subcellular 
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localization, our results indicated that FSHβ protein was 

also expressed in the nucleus (Liu et al. 2020; Tian et al. 

2023). In addition, further prediction using TMHMM 

confirmed that there was no obvious transmembrane 

domain and signal peptide distribution in the FSHβ protein 

(Palmerini et al. 2016; Niu et al. 2019). Therefore, FSHβ 

protein could not be a protein present in the membrane; it 

was also coherent with the prediction that it is not a secreted 

protein, indicating that FSHβ protein can receive foreign 

signals and participate in cell regulation. It has a specific 

role in maintaining a steady state. 

Protein glycosylation and phosphorylation play a 

significant role in cell signal transduction, immunity, gene 

expression adaptation, and protein degradation (Ulintz et 

al. 2019; Li et al. 2023). The role of glycosylation in the 

processing, stability, and function of secondary cellular 

proteins cannot be overlooked. In this study, the FSHβ 

protein was predicted to have more phosphorylation and 

glycosylation sites. It also indicates the complexity of 

FSHβ protein function. The prediction of the secondary 

structure of FSHβ protein by SOPMA showed that irregular 

curling and β-turning accounted for a large proportion of 

the secondary structure (Prabhudesai et al. 2020). Different 

secondary structures and super-secondary structures 

combine to form independent stable structural regions. 

These domains are functionally important, immutable, and 

highly stable (Lan et al. 2011). The domain rich and stable 

FSHβ sequence should be selected to express FSHβ 

protein, which is beneficial to the successful expression and 

purification of amino acids in the protein. 

 

Conclusion 

The FSHβ gene is highly conserved, has multiple 

phosphorylation sites with one glycosylation site, and is a 

hydrophilic protein. Because it is concentrated in the 

nucleus, the FSHβ gene does not have a transmembrane 

structure and is not a secreted protein. It can participate in 

transcriptional regulation during ontogeny and may have 

good immunogenicity. 
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