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ABSTRACT 
 

The global poultry industry constantly faces the threat of various bacterial and viral diseases, some of which are 

underreported, especially in developing countries. Even when official reports are available, the scope of the problem 

and its impact are unknown. Testing for individual pathogens is costly and tedious and may lead to inappropriate 

management, especially in the case of immunosuppressive diseases. Next-generation sequencing (NGS) provides an 

opportunity to discover all the events leading to clinical diseases. NGS for bacteria is well established, but this is not 

the case for viral agents. Because of their many variants, it is impossible to establish barcodes to detect all viruses. 

Therefore, we propose to establish a multi-barcode system to detect all bacteria and viruses in clinical avian 

specimens. The libraries can be generated with a one-step reverse transcription–PCR system for bacteria and RNA and 

DNA viruses, after priming with a single bacterial primer barcode and primer sets for all viruses or targeted viral 

genes of interest. 
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INTRODUCTION 

 

Various viral and bacterial avian pathogens cause 

diseases of Office International des Epizooties (OIE)-

listed and beyond (FAO-OIE 2017). Unlisted pathogens 

must also be considered because they are known to cause 

significant economic losses. The presence of pathogens is 

usually underreported in developing countries (Conan et 

al. 2012; Perry et al. 2013; Shittu et al. 2016; McElwain 

and Thumbi 2017; Brown et al. 2018).  Although such 

pathogens can lead to clinical diseases and mortality, 

some can cause only mild or subclinical infections, and 

others cause cryptic subclinical infections, allowing the 

clinical manifestations of co-infecting pathogens to 

dominate (Blackall 1999; Butt et al. 2022). Such complex 

situations present challenges for pathogen detection. The 

time-consuming and costly detection of individual 

pathogens causes uncertainty in the management of 

poultry health and may also lead to misdiagnoses because 

the underlying infection is not detected, particularly in 

cases of immunosuppression (Blackall 1999; Butt et al. 

2022; Mehnaz et al. 2023). 

Next-generation sequencing (NGS) provides an 

opportunity to detect all the events that contribute to 

clinical disease. The current technology involves a high-

throughput system that can detect all the genetic material 

in a specimen (Behjati and Tarpey 2013). The NGS has 

been proven to be an important tool for confronting virus 
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pandemics (Quer et al. 2022). The application of NGS to 

bacteria is almost straightforward because an almost 

completely conserved gene or gene fragment has been 

identified for all bacterial classes and genera. However, 

the application of NGS to virus detection is still 

problematic because a highly conserved gene or gene 

fragment has not been identified for all viral families 

(Moser et al. 2016). The use of random primers may 

detect all viruses, but the host background sequences will 

dominate the hits, whereas any viral sequence will occur 

in very low quantities, as it has been demonstrated in 

various experiments (Marston et al. 2013; Perlejewski et 

al. 2015; Schlaberg et al. 2017). Primer independent 

approach has been proposed in a review to study avian 

virus diversity (Kapgate et al. 2015).  

Here, we review the methods used to overcome this 

problem by using multiple primer sets that amplify 

specific bacterial and viral targets as libraries for NGS. 

 

Avian Diseases and Their Economic Impacts 

The global chicken industry constantly faces the 

threat of various bacterial and viral diseases. The OIE has 

reported these as OIE-listed diseases and other important 

diseases (FAO-OIE 2017). The listed bacterial diseases 

are fowl cholera, chlamydiosis, fowl typhoid, 

mycoplasmosis, pullorum disease, and avian tuberculosis, 

whereas those of viral origin are avian influenza (AI), 

Newcastle disease (ND), infectious bronchitis (IB), 

infectious laryngotracheitis (ILT), Marek’s disease, and 

infectious bursal disease (IBD). Other unlisted pathogens 

should also be considered because they have been shown 

to cause significant economic losses. That includes fowl 

pox, reovirus, avian adenoviruses, chicken infectious 

anemia (CIA), coryza, and colibacillosis. Important avian 

adenoviruses cause egg drop syndrome (EDS) and 

inclusion body hepatitis (IBH) (Hess 2000; Wibowo et al. 

2019; Liu et al. 2021; Tchoupou-Tchoupou et al. 2022; 

Du et al. 2023; Abdel-Alim et al. 2023). Some of these 

agents also have zoonotic potential, such as avian 

chlamydiosis, avian tuberculosis, fowl typhoid, pullorum 

disease, AI, and ND.  

A large body of evidence shows that AIV frequently 

causes epizootic, epidemic, and pandemic, which makes it 

constantly of high interest. The genome of the virus 

provides the first challenge to its detection. There are 

many subtypes of the virus based on variations in the 

hemagglutinin (HA) and neuraminidase (NA) gene 

sequences (COMMITTEE 1980).  Eighteen HA and nine 

NA subtypes have been identified (Wu et al. 2014; Sutton 

et al. 2017). Among the subtypes, some H5 and H7 

subtypes belong to the highly pathogenic avian influenza 

viruses (HPAIV) (FAO 2014). At the end of 2016, an AIV 

of H9N2 subtype was introduced into and spread 

throughout Indonesia, causing massive economic losses 

(Jonas et al. 2018). Its co-circulation with AIV-H5N1 

(Mahardika et al. 2016) requires rigid surveillance. The 

AIV-H9N2 has been shown to contribute to the generation 

of new strains of AIV (Yu et al. 2015), which may have 

significances for animal and human health. The 

introduction of AIV-H5N1 and -H9N2 has made it clear 

that other subtypes must be monitored in Indonesia. The 

HPAIV H7N9, which is endemic in Asia (Gilbert et al. 

2014; Qi et al. 2014) might also spread to Indonesia.  

Huge economic losses have been reported, arising 

from mortality, reduced egg and meat production, and 

immunosuppression. These economic losses have been 

attributed to mycoplasma (Zhu et al. 2018), IBV (van 

Beurden et al. 2018), AI-H9N2 (Yang et al. 2017), 

colibacillosis (Lau et al. 2012), coryza (Blackall 1999), 

and much more. 

 

Existing Diagnostic Protocols and NGS 

Conventionally, the diagnostic procedure for any 

infection is used to confirm the tentative diagnosis, which 

is made based on clinical signs, anatomical pathology, and 

epizootiology. As described above, the clinical signs of 

many diseases are often inconclusive, unless 

pathognomonic signs are prominent. Reduced egg 

production, for example, can be caused by many 

infections. The immunosuppressive effects of some 

infections might allow infections by other pathogens, so 

the predisposing agent is hidden and unsuspected. 

Vaccination may blur the clinical signs, as in the case of 

partial immunity, when the infection presents milder 

symptoms with lower mortality. Testing for individual 

pathogens to confirm a differential diagnosis is laborious, 

costly, and time-consuming. 

The latest NGS technology allows the simultaneous 

detection of various genetic materials in a specimen 

(Plyusnin et al. 2020). However, the performance of 

various platforms varies. Three platforms of NGS 

marketed in 2011 are Ion Torrent’s PGM, Pacific 

Biosciences’ RS, and the Illumina MiSeq (Quail et al. 

2012). In a comparison of the Illumina and Ion Torrent 

platforms, other groups (Salipante et al. 2014) found that 

the latest produced higher error rates with premature 

sequence truncation. Another group of researchers used 

Escherichia coli strain DH1 to analyze the quality of 

sequencing results of the Roche Genome Sequencer FLX 

System (FLX), Illumina Genome Analyzer (GA), and 

Applied Biosystems SOLiD system (SOLiD) (Suzuki et 

al. 2011).  They found that the SOLiD produced the 

largest fraction of data, which could not be aligned to the 

reference sequence; the GA produced the lowest sequence 

accuracy; and the FLX produced the smallest sequence 

coverage (Suzuki et al. 2011). 

Other evidence shows that the performance of various 

platforms varies. In detecting Human immunodeficiency 

virus 1 receptors, Raymond et al. (2017) found that the 

Illumina platform could be used to detect minor receptor 

variants. When applied to the detection of blood 

pathogens, Frey et al. (. 2014) showed that the Roche-454 

Titanium platform could detect the lowest dengue virus 

titers. For bacterial samples, only the MiSeq platform was 

reported to be able to provide unambiguous sequencing 

read. Other comparisons showed that the Roche-454 

Titanium performed the best in producing longer reads; 

the MiSeq in depth and breadth of coverage; and the Ion 

Torrent in sequencing speed (Frey et al. 2014).  

 

DNA Barcoding 

Under this Topic add more Literature as Much 

Published Material is Available 

To detect multiple pathogenic agents simultaneously, 

as proposed in this manuscript, a DNA barcoding 

approach seems most suitable. DNA barcoding is a short 
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DNA sequence to identify family, genus, or species of 

organism (Hebert et al. 2003; Tanabe and Toju 2013).  

For bacteria, the 16S ribosomal RNA (16S rRNA) 

fragment is mostly recommended as a barcode (Tanabe 

and Toju 2013), together with other fragments such as 

rpoB, dnaK, gyrB, and recA (Ramesh et al. 2021). The 

gene 16S rRNA poses nine variable regions located 

between conserved regions (Panek et al. 2018). The V3 

and VP variable regions are commonly used in the genus 

or species classification in various species (Klindworth et 

al. 2013; Panek et al. 2018). This fragment should be 

appropriate for the detection of bacteria in poultry. 

When we accessed the internationally published 

articles available in PubMed on July 9, 2019 using the 

EndNote software, and selected only detection of agent 

genetic material, there were only 15 papers with the 

keywords “NGS avian pathogen” or “NGS avian disease” 

or “NGS poultry pathogen” or “NGS poultry disease”. 

However, none dealt with the detection of multiple 

disease agents in poultry. Instead, the papers dealt with 

individual agents, such as Newcastle disease (Cattoli et al. 

2011; Butt et al. 2019; Lebdah et al. 2022; Akhtar et al. 

2023), Marek’s (Maceachern et al. 2011), influenza and 

poxvirus (Croville et al. 2012; Croville et al. 2018), 

avulavirus-1 (Tal et al. 2019), infectious bronchitis virus 

(van Borm et al. 2021), Avian Metapneumovirus Kariithi 

et al. 2022), duck herpesvirus (Damir et al. 2023), and 

enteric viruses (Day and Zsak 2013). 

Application of NGS has been applied to detect and 

predict the virulence of NDV, which includes a platform 

to subtract the host sequences (Butt et al. 2018). A similar 

platform was used to describe the ability to obtain almost 

complete genomes on 28 avian paramyxoviruses 

(APMV), four AIV, and two IBV in a single run 

(Dimitrov et al. 2017). In another report, Sequence-

Independent-Single-Primer-Amplification (SISPA) was 

able to detect and identify avian RNA viruses from 

specimens of high virus titers (Chrzastek et al. 2017). 

Such an approach might not be optimum, as the virus titer 

in the specimen can be extremely low.  

Experience in the application of NGS to human 

virology should facilitate its application to avian diseases. 

cDNA libraries are usually generated with reverse 

transcription (RT)–PCR or PCR, using targeted primer 

sets for influenza virus (Croville et al. 2012; Zou et al. 

2016), Seoul virus (Kim et al. 2018), herpes simplex virus 

(Fujii et al. 2018), rhinovirus (Greninger et al. 2017a), 

parainfluenza (Greninger et al. 2017b). Those again were 

engaged for individual virus families or species. Non-

targeted NGS application for poultry viruses has been 

applied (Parris et al. 2022). The protocol must include a 

non-target RNA depletion strategy to increase its 

sensitivity (Parris et a. 2022). 

Primer crowding followed by an enrichment step 

seems to be a suitable way to detect viral pathogens in 

poultry specimens. The primer crowd was applied to 

sequence Epstein-Barr Virus (EBV), in which 59 or 60 

primer sets were used in a single PCR (Kwok et al. 2012; 

Simbiri et al. 2015). In a review of the sequencing of the 

EBV genome, Kwok and Chiang (Kwok and Chiang 

2016) evaluated the benefits of PCR enrichment. With 

PCR enrichment, it was possible to detect the EBV 

genome in tumor biopsies, although only around 0.01% of 

the total reads were mapped to EBV. In poultry, the 

metagenomics approach has been applied in poultry farms 

in China and could simultaneously detect major viruses 

infecting farms (Qiu et al. 2019). 

 

Future Direction  

In the short future, automatic chain termination 

Sanger’s method will still find its use. This method is still 

being improved by various scientists. With the decreasing 

cost and increasing efficiency, NGS has been applied in 

clinical and public health laboratory practice (Besser et al. 

2018). In other words, NGS is ready to move from 

research to a (human) clinical setting (CADTH 2014), 

although it is not problem-free (Perlejewski et al. 2020). 

We think that we are not far away from seeing its 

application in animal clinical settings.   

Instead of detecting single to very few agents we 

previously discussed, we believe multi-barcoding to detect 

multiple agents is promising to be applied in poultry 

health management. This is also valid for other kinds of 

animal husbandry. Multi-barcoding of avian pathogens 

should extend our knowledge of the presence of diseases 

in the chicken industry and their biology. All pathogens 

should be detected simultaneously, so a complete picture 

of the disease status of a farm can be determined. All 

avian pathogens might contribute to economic losses and 

compromise the provision of protein resources for human 

consumption throughout the world. NGS provides an 

opportunity to meet this challenge because it allows us to 

detect all the genetic material in a specimen simulta-

neously. This approach will provide invaluable data on the 

genetic variation and spread of certain pathogens. 

Due to the nature of high throughput and the cost, the 

NGS approach might be better engaged for the 

management of farms. In other words, it does not fit to be 

used as a diagnostic tool. The result will be a strong base 

for better farm management. This will lead to a 

scientifically sound understanding of the pathogenesis and 

possible involvement of many pathogens that lead to 

health disturbance. Genetic variation will also benefit the 

vaccine design and zoonoses control.   

The number of bacterial and viral avian pathogens 

exceeds 20. These include OIE-listed and non-OIE-listed 

organisms. In some cases, the clinical signs of these 

pathogens are indistinguishable. Moreover, clinical signs 

might be attributable to certain pathogens while those of 

others are hidden, although they are the predisposing 

factors that lead to superinfection. This is particularly 

valid for immunosuppressive agents such as IBDV, 

CIAV, and AIV-H9N2. For the latest, immunosuppressive 

effects have been attributed to AIV-H9N2 (Qiang and 

Youxiang 2011), although clinical infections also occur 

(Jonas et al. 2018). 

Barcodes are available for bacterial detection. 

Metagenomic studies of bacteria are frequently 

accomplished by investigating the 16S rRNA gene. 

Illumina has marketed a 16S metagenomic barcode 

aiming at the 16S rRNA V3 and V4 regions based on the 

study by Klindworth et al. (2013b). Illumina adapter 

sequences are added to the 5’-end of the primer set. The 

addition of these non-target sequences to primer sets of 

various virus gene fragments should work well. This 

adapter can be used to enrich the DNA library.  
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The future application of NGS for the detection of 

many viruses in poultry is bright. The hope is huge, 

including in the study of wildlife. With NGS, it is possible 

to detect many viruses associated with Antarctic wildlife 

(Smeele et al. 2018). However, the application of NGS to 

the detection of many viruses remains challenging. So far, 

no specific sequence can be attributed to all existing 

viruses. Primer-free amplification, in which all DNA in 

the sample is sequenced, has been used for library 

preparation. Using this approach, viral sequences that can 

be mapped to any virus sequence might constitute only a 

tiny proportion of the reads. When the technique was used 

to detect EBV, only 0.01% of the total reads were mapped 

to the EBV genome. The best option seems to be the PCR 

amplification of all the viral pathogens in a sample. When 

EBV was detected with up to 60 primer sets, 90% of the 

reads generated could be mapped to the reference 

sequence (Kwok et al. 2012; Simbiri et al. 2015). The 

application of random primers might detect all viruses, but 

the background host sequences will dominate the hits and 

any viral sequences will occur in small low quantities. 

The modification of 16S rRNA metabarcoding with 

gene-specific viral primers is a plausible option. Illumina 

adapter can be added to the 5’-end of the primers. Viral 

target genes occur as single gene fragments, except for 

AIV. In that case, the subtyping of AIV is usually 

preferred, because only some subtypes of AIV exist in a 

specific region. When analyzing this virus, segment-

specific HA and NA sequences of AIV-H5N1 and AIV-

H9N2 or other subtypes of interest should be included in 

the primer mixture. 16S rRNA metabarcoding allows 

sequence reads of up to 600 bp (including the adapter). 

We believe that this length is sufficient to annotate a 

specific sequence to a particular species and subtype. 

The NGS-Metabarcoding with primer crowding 

approach might also be extended to important poultry 

parasitic diseases which have economic as well as 

zoonotic impacts. The NGS has been applied to identify 

individual parasites such as blastocysts (Higuera et al. 

2021; Maloney et al. 2021), Histomonas meleagridis 

(Palmieri et al. 2021), and Eimeria spp. (Hauck et al. 

2019), and Listeria monocytogenes (Sioutas et al. 2023), 

as examples.  

A graphical presentation of proposed steps in the 

development of NGS for avian bacterial and viral diseases 

is presented in Fig. 1. In step 1, a database of various virus 

families is downloaded from GenBank. The primer pair is 

selected from each family, and illumina overhang forward 

(OF) and backward (OB) are added at the 5’-end of the 

respective primer (www.illumina.com). The primer sets 

are available upon request. The illumina 16S-RNA 

primers for bacterial detection are proposed based on 

Klindworth et al. (2013) are chosen. In step 2, all bacterial 

and viral RNA and/or DNA from one flock are isolated 

with a DNA-RNA isolation kit and amplified with primers 

designed in Step 1 using RT-PCR one-step amplification 

kit. In step 3, first step PCR products are isolated and 

amplified using PCR with OF and OB primers. In step 4, 

the second step PCR product is isolated and subjected to 

further library prep protocol for indexing, normalization, 

and other steps prior to application into the NGS machine.  

 
 
Fig. 1: Graphical presentation of proposed steps in the 

development of NGS for avian bacterial and viral diseases. Step 

1: A database of various virus families is downloaded from 

GenBank. Primer pair is selected from each family, and Illumina 

overhang forward (OF) and backward (OB) are added at 5’-end 

of respective primer (www.illumina.com). The primer sets are 

available upon request. The illumina 16S-RNA primers for 

bacterial detection are proposed based on Klindworth et al. 

(2013) are chosen. Step 2: all bacterial and viral RNA and/or 

DNA from one flock are isolated with a DNA-RNA isolation kit 

and amplified with primers designed in Step 1 using RT-PCR 

one-step amplification kit. Step 3: First-step PCR products are 

isolated and amplified using PCR with OF and OB primers. Step 

4: In the second step PCR product is isolated and subjected to 

further library prep protocol for indexing, normalization, and 

other steps prior to application into the NGS machine (Hess et 

al. 2020). 

 

Modified from Malla et al. (2018), Plyusnin et al. 

(2020), and Garfias-Gallegos et al. (2022), the simplified 

bioinformatics pipeline flowchart in the application of 

NGS in poultry farms using targeted and crowded primer 

sets is shown in Fig. 2. The raw data from the machine 

will undergo quality checks to remove short and low- 
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Fig. 2: Simplified Bioinformatics Pipeline in the Application of NGS in poultry farm using targeted and crowded primer sets. The raw 

data from the machine will undergo a quality check to remove short and low-quality reads. The data will then be clustered into 

respective farms by calling the respective index sequence before the index is removed. Clean data will thereafter be sub-clustered into 

bacteria and virus families by calling the respective primers before the primers are trimmed. Contig data or consensus sequences will 

be generated and subjected to BLAST search or eventually aligned using Clustal Omega to produce clustered sequences. The output 

will be Operational Taxonomic units (OTUs). The end products will be a recommendation to the farm manager for farm improvement 

as well genetic variation of each OTU. The flowchart is modified from Malla et al. (2018), Plyusnin et al. (2020), and Garfias-Gallegos 

et al. (2022). The software for each step has been described in those references. 
 

quality reads. The data will then cluster into respective 

farms by calling the respective index sequence before the 

index will be removed. Clean data will thereafter be sub-

clustered into bacteria and virus families by calling the 

respective primers before the primers are trimmed. Contig 

data or consensus sequences will be generated and 

subjected to BLAST search or eventually aligned using 

Clustal Omega to produce clustered sequences. We might 

have to make data partition before conducting Clustal 

Omega. The output will be Operational Taxonomic units 

(OTUs). If needed, OTU verification might be needed as 

exemplified by Qiu et al. (2019). The end products will be 

a recommendation to the farm manager for farm 

improvement as well genetic variation of each OTU. 

Further research questions might ascend such as the need 

for vaccine improvement, the pathogenicity of novel 

bacteria, and many others. The software for each step has 

been described (Malla et al. 2018; Plyusnin et al. 2020; 

Garfias-Gallegos et al. 2022). 

The implementation of this protocol is still 

challenging. PCR is usually conducted with a specific 

concentration of oligonucleotide primers, and excessive 

amounts of primers could disturb the polymerase reaction 

(Lorenz 2012). Overall cost can be feasible. The test 

should be done with samples from hundred farms. As time 

is needed to collect samples from various farms, this 

approach is suitable for long-term farm health management. 

Conclusion 

In conclusion, multi-barcoding for bacterial and viral 

pathogens should benefit the chicken-farming industry 

throughout the world. It will allow the detection of all 

possible disease agents, so a complete picture of the 

disease status of a region can be drawn, and subsequent 

management strategies put in place accordingly. The 

challenge of excessive oligonucleotides should be 

anticipated, and its resolution will allow the full potential 

of NGS to be exploited. 
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Abbreviations 

AI:  Avian influenza 

CIA:  Chicken infectious anemia  

DNA:  Deoxyribonucleic acid 

EBV:  Epstein-Barr Virus 

EDS:  Egg drop syndrome 

HA:  Hemagglutinin 

HPAI:  How pathogenic avian influenza  

IB:  Infectious bronchitis 

IBD:  Infectious Bursal Disease 

IBH:  Inclusion body hepatitis 

IL:  Infectious Laryngotracheitis 

LPAI:  Low pathogenic avian influenza virus 

MD:  Marek’s Disease 

NA:  Neuraminidase 

ND:  Newcastle disease 

NGS:  Next Generation Sequencing 

OB:  Overhang backward  

OF:  Overhang forward  

OIE:  Office International des Epizooties 

PCR:  Polymerase chain reaction 

RNA:  Ribonucleic acid 

RT-PCR:  Reverse transcriptase-PCR 

SISPA:  Sequence-Independent-Single-Primer-

Amplification 

stLFR:  Single-tube long fragment read 
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